Suppr超能文献

结肠胶囊内镜人工智能临床医生指南——技术简化

Clinicians' Guide to Artificial Intelligence in Colon Capsule Endoscopy-Technology Made Simple.

作者信息

Lei Ian I, Nia Gohar J, White Elizabeth, Wenzek Hagen, Segui Santi, Watson Angus J M, Koulaouzidis Anastasios, Arasaradnam Ramesh P

机构信息

Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry CV2 2DX, UK.

CorporateHealth International, Inverness IV2 5NA, UK.

出版信息

Diagnostics (Basel). 2023 Mar 8;13(6):1038. doi: 10.3390/diagnostics13061038.

Abstract

Artificial intelligence (AI) applications have become widely popular across the healthcare ecosystem. Colon capsule endoscopy (CCE) was adopted in the NHS England pilot project following the recent COVID pandemic's impact. It demonstrated its capability to relieve the national backlog in endoscopy. As a result, AI-assisted colon capsule video analysis has become gastroenterology's most active research area. However, with rapid AI advances, mastering these complex machine learning concepts remains challenging for healthcare professionals. This forms a barrier for clinicians to take on this new technology and embrace the new era of big data. This paper aims to bridge the knowledge gap between the current CCE system and the future, fully integrated AI system. The primary focus is on simplifying the technical terms and concepts in machine learning. This will hopefully address the general "fear of the unknown in AI" by helping healthcare professionals understand the basic principle of machine learning in capsule endoscopy and apply this knowledge in their future interactions and adaptation to AI technology. It also summarises the evidence of AI in CCE and its impact on diagnostic pathways. Finally, it discusses the unintended consequences of using AI, ethical challenges, potential flaws, and bias within clinical settings.

摘要

人工智能(AI)应用在整个医疗生态系统中已变得广泛流行。在近期新冠疫情的影响之后,结肠胶囊内镜检查(CCE)被纳入英国国家医疗服务体系(NHS)的试点项目。它展示了缓解全国内镜检查积压问题的能力。因此,人工智能辅助的结肠胶囊视频分析已成为胃肠病学中最活跃的研究领域。然而,随着人工智能的快速发展,掌握这些复杂的机器学习概念对医疗保健专业人员来说仍然具有挑战性。这成为临床医生采用这项新技术并迎接大数据新时代的障碍。本文旨在弥合当前CCE系统与未来完全集成的人工智能系统之间的知识差距。主要重点是简化机器学习中的技术术语和概念。这有望通过帮助医疗保健专业人员理解胶囊内镜检查中机器学习的基本原理,并在他们未来与人工智能技术的互动和适应中应用这些知识,来解决普遍存在的“对人工智能未知的恐惧”。它还总结了人工智能在CCE中的证据及其对诊断途径的影响。最后,它讨论了在临床环境中使用人工智能的意外后果、伦理挑战、潜在缺陷和偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f834/10047552/f2184b5a0da4/diagnostics-13-01038-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验