Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Lab Chip. 2010 Oct 21;10(20):2741-8. doi: 10.1039/c004615a. Epub 2010 Aug 16.
We aimed to create an autonomous on-chip system that performs targeted delivery of lipid vesicles (liposomes) as nano- or microscale reactors using machinery from biological systems. Reactor-liposomes would be ideal model cargoes to realize biomolecular-motor-based biochemical analysis chips; however, there are no existing systems that enable targeted delivery of cargo-liposomes in an autonomous manner. By exploiting biomolecular-motor-based motility and DNA hybridization, we demonstrate that single-stranded DNA (ssDNA)-labeled microtubules (MTs), gliding on kinesin-coated surfaces, acted as cargo transporters and that ssDNA-labeled cargo-liposomes were loaded/unloaded onto/from gliding MTs without bursting at loading reservoirs/micropatterned unloading sites specified by DNA base sequences. Our results contribute to the development of an alternative strategy to pressure-driven or electrokinetic flow-based microfluidic devices.
我们旨在创建一个自主的片上系统,该系统使用生物系统中的机械来靶向递送电离脂质体(脂质体)作为纳米或微尺度反应器。反应器脂质体将是实现基于生物分子马达的生化分析芯片的理想模型货物;然而,目前还没有能够以自主方式靶向递送电离脂质体的现有系统。通过利用基于生物分子马达的运动性和 DNA 杂交,我们证明了在肌球蛋白涂层表面上滑行的标记有单链 DNA(ssDNA)的微管(MT)充当货物转运体,并且 ssDNA 标记的货物脂质体在加载时被加载/卸载到/从滑行 MT 上,而不会在由 DNA 碱基序列指定的加载储液器/微图案卸载部位爆裂。我们的研究结果为压力驱动或基于电动流动的微流控装置的替代策略的发展做出了贡献。