Suppr超能文献

关于混合 Logit 模型在机动车事故中行人伤害严重程度建模的说明。

A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model.

机构信息

Korea Research Institute for Human Settlements, National Infrastructure & GIS Research Division, 224 Simin-Ro, Dongan-gu, Anyang-si, Gyeonggi-do 431-712, Republic of Korea.

出版信息

Accid Anal Prev. 2010 Nov;42(6):1751-8. doi: 10.1016/j.aap.2010.04.016. Epub 2010 Jun 1.

Abstract

Pedestrian-injury severity has been traditionally modeled with approaches that have assumed that the effect of each variable is fixed across injury observations. This assumption ignores possible unobserved heterogeneity which is likely to be particularly important in pedestrian injuries because unobserved physical health, strength, and behavior may significantly affect the pedestrians' ability to absorb collision forces. To address such unobserved heterogeneity, this research applies a mixed logit model to analyze pedestrian-injury severity in pedestrian-vehicle crashes. Using police-reported collision data from 1997 through 2000 from North Carolina, several factors were found to more than double the average probability of fatal injury for pedestrians in motor-vehicle crashes including: darkness without streetlights (400% increase in fatality probability), vehicle is a truck (370% increase), freeway (330% increase), speeding involved (360% increase), and collisions involving a motorist who had been drinking (250% increase). It was also found that the effect of pedestrian age was normally distributed across observations, and that as pedestrians became older the probability of fatal injury increased substantially. Heterogeneity in the mean of the random parameters for the freeway and pedestrian-solely-at-fault collision indicators was related to pedestrian gender, and heterogeneity in the mean of the random parameters for the traffic-sign and motorist-back-up indicators was related to pedestrian age.

摘要

行人伤害严重程度传统上是通过假设每个变量的效应在所有伤害观测值中是固定的方法进行建模的。这一假设忽略了可能存在的未被观察到的异质性,而这种异质性在行人伤害中很可能特别重要,因为未被观察到的身体健康、体力和行为可能会显著影响行人吸收碰撞力的能力。为了解决这种未被观察到的异质性,本研究应用混合逻辑模型来分析行人-车辆碰撞中的行人伤害严重程度。利用北卡罗来纳州 1997 年至 2000 年警方报告的碰撞数据,研究发现了几个因素,这些因素使行人在机动车碰撞中致命伤害的平均概率增加了一倍以上,包括:无路灯的黑暗环境(致命概率增加 400%)、车辆为卡车(致命概率增加 370%)、高速公路(致命概率增加 330%)、涉及超速行驶(致命概率增加 360%)以及涉及酒后驾车的司机的碰撞(致命概率增加 250%)。研究还发现,行人年龄的效应在观测值中呈正态分布,随着行人年龄的增长,致命伤害的概率显著增加。随机参数的均值在高速公路和行人单独全责碰撞指标中的异质性与行人性别有关,而随机参数的均值在交通标志和司机倒车指标中的异质性与行人年龄有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验