通过工程化聚合物主链来增强抗污磺酸甜菜碱水凝胶。
Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels.
机构信息
Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
出版信息
Langmuir. 2010 Sep 21;26(18):14793-8. doi: 10.1021/la1028004.
We have demonstrated that molecularly engineering the chemical structure of a monomer can lead to hydrogels with improved mechanical strength. In this case, hydrogels from zwitterionic sulfobetaine methacrylate monomers were compared to sulfobetaine vinylimidazole (pSBVI) hydrogels. We show that the introduction of the vinylimidazole backbone improves the tensile and compressive mechanical properties of the sulfobetaine hydrogel by an order of magnitude over the same properties of a methacrylate hydrogel. Zwitterionic groups have been shown to create surface coating materials with ultralow fouling properties, and we demonstrate here that the presence of the imidazole group does not compromise the nonfouling properties attributed to the zwitterionic sulfobetaine: surfaces coated with pSBVI exhibited exceptionally low nonspecific protein adsorption, and cell adhesion was reduced by 97% relative to low-fouling poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels.
我们已经证明,通过对单体的化学结构进行分子工程设计,可以得到机械强度得到改善的水凝胶。在这种情况下,将两性离子磺酸甜菜碱甲基丙烯酰胺单体的水凝胶与磺酸甜菜碱乙烯基咪唑(pSBVI)水凝胶进行了比较。我们表明,与甲基丙烯酰胺水凝胶相比,引入乙烯基咪唑主链将磺酸甜菜碱水凝胶的拉伸和压缩机械性能提高了一个数量级。已经证明,两性离子基团可以形成具有超低污染特性的表面涂层材料,并且我们在这里证明,咪唑基团的存在不会损害归因于两性离子磺酸甜菜碱的非粘性特性:用 pSBVI 涂覆的表面表现出异常低的非特异性蛋白质吸附,并且与低污染的聚(2-羟乙基甲基丙烯酸酯)(pHEMA)水凝胶相比,细胞黏附减少了 97%。