Unité de Dynamique Structurale des Macromolécules, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France.
PLoS One. 2010 Aug 18;5(8):e12245. doi: 10.1371/journal.pone.0012245.
Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA.
结核分枝杆菌 DNA 回旋酶是一种必不可少的纳米机器,参与 DNA 拓扑结构的调节,它是该生物体中唯一存在的 II 型拓扑异构酶,也是喹诺酮类药物作用的唯一靶点,喹诺酮类药物是对抗耐多药结核分枝杆菌的重要药物。为了在原子水平上理解广泛耐药结核分枝杆菌中出现的喹诺酮类药物耐药机制,我们对构成催化 DNA 回旋酶反应核心的两个独立结构域(Toprim 和断裂-连接结构域)进行了联合功能、生物物理和结构研究。这使我们能够产生与 DNA 和喹诺酮分子复合的催化反应核心模型,确定了喹诺酮结合的原始机制特性,并阐明了结核分枝杆菌 DNA 回旋酶的氨基酸突变与耐药表型之间的关系。这些结果与我们之前对喹诺酮类药物耐药性的研究一致。有趣的是,整个断裂-连接结构域的结构揭示了一种新的相互作用,其中喹诺酮结合口袋(QBP)被来自对称相关分子的 N 端螺旋阻塞。这种相互作用为设计基于肽的抑制剂提供了有用的起点,这些抑制剂可以靶向 DNA 回旋酶以防止其与 DNA 结合。