Suppr超能文献

用于改进呼吸频率估计的数据融合

Data Fusion for Improved Respiration Rate Estimation.

作者信息

Nemati Shamim, Malhotra Atul, Clifford Gari D

机构信息

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

EURASIP J Adv Signal Process. 2010;2010:926305. doi: 10.1155/2010/926305.

Abstract

We present an application of a modified Kalman-Filter (KF) framework for data fusion to the estimation of respiratory rate from multiple physiological sources which is robust to background noise. A novel index of the underlying signal quality of respiratory signals is presented and then used to modify the noise covariance matrix of the KF which discounts the effect of noisy data. The signal quality index, together with the KF innovation sequence, is also used to weight multiple independent estimates of the respiratory rate from independent KFs. The approach is evaluated on both a realistic artificial ECG model (with real additive noise), and on real data taken from 30 subjects with overnight polysomnograms, containing ECG, respiration and peripheral tonometry waveforms from which respiration rates were estimated. Results indicate that our automated voting system can out-perform any individual respiration rate estimation technique at all levels of noise and respiration rates exhibited in our data. We also demonstrate that even the addition of a noisier extra signal leads to an improved estimate using our framework. Moreover, our simulations demonstrate that different ECG respiration extraction techniques have different error profiles with respect to the respiration rate, and therefore a respiration rate-related modification of any fusion algorithm may be appropriate.

摘要

我们展示了一种改进的卡尔曼滤波器(KF)框架在数据融合中的应用,用于从多个生理源估计呼吸速率,该方法对背景噪声具有鲁棒性。提出了一种新颖的呼吸信号潜在信号质量指标,然后用于修改KF的噪声协方差矩阵,以减少噪声数据的影响。信号质量指标与KF创新序列一起,还用于对来自独立KF的多个呼吸速率独立估计进行加权。该方法在逼真的人工心电图模型(带有真实加性噪声)以及从30名受试者获取的包含心电图、呼吸和外周血压波形的夜间多导睡眠图真实数据上进行了评估,从中估计呼吸速率。结果表明,在我们数据中呈现的所有噪声水平和呼吸速率下,我们的自动投票系统都能优于任何单个呼吸速率估计技术。我们还证明,即使添加一个噪声更大的额外信号,使用我们的框架也能得到改进的估计。此外,我们的模拟表明,不同的心电图呼吸提取技术在呼吸速率方面具有不同的误差分布,因此对任何融合算法进行与呼吸速率相关的修改可能是合适的。

相似文献

1
Data Fusion for Improved Respiration Rate Estimation.
EURASIP J Adv Signal Process. 2010;2010:926305. doi: 10.1155/2010/926305.
5
Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter.
Physiol Meas. 2008 Jan;29(1):15-32. doi: 10.1088/0967-3334/29/1/002. Epub 2007 Dec 10.
9
Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for baseline wander noise removal.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5681-4. doi: 10.1109/IEMBS.2009.5333113.
10
An adaptive Kalman filter for ECG signal enhancement.
IEEE Trans Biomed Eng. 2011 Apr;58(4):1094-103. doi: 10.1109/TBME.2010.2099229. Epub 2010 Dec 13.

引用本文的文献

1
Continuous respiratory rate monitoring through temporal fusion of ECG and PPG signals.
PLoS One. 2025 Jun 17;20(6):e0325307. doi: 10.1371/journal.pone.0325307. eCollection 2025.
2
Data Fusion of RGB and Depth Data with Image Enhancement.
J Imaging. 2024 Mar 21;10(3):73. doi: 10.3390/jimaging10030073.
3
Open-source software for respiratory rate estimation using single-lead electrocardiograms.
Sci Rep. 2024 Jan 2;14(1):167. doi: 10.1038/s41598-023-50470-0.
4
Wearable Electrocardiogram Quality Assessment Using Wavelet Scattering and LSTM.
Front Physiol. 2022 Jun 30;13:905447. doi: 10.3389/fphys.2022.905447. eCollection 2022.
5
The Current State of Optical Sensors in Medical Wearables.
Biosensors (Basel). 2022 Apr 6;12(4):217. doi: 10.3390/bios12040217.
6
Improved ECG-Derived Respiration Using Empirical Wavelet Transform and Kernel Principal Component Analysis.
Comput Intell Neurosci. 2021 Oct 15;2021:1360414. doi: 10.1155/2021/1360414. eCollection 2021.
8
Multichannel ECG recording from waist using textile sensors.
Biomed Eng Online. 2020 Jun 16;19(1):48. doi: 10.1186/s12938-020-00788-x.
9
Detecting heart failure using wearables: a pilot study.
Physiol Meas. 2020 May 4;41(4):044001. doi: 10.1088/1361-6579/ab7f93.
10
A novel diversity method for smartphone camera-based heart rhythm signals in the presence of motion and noise artifacts.
PLoS One. 2019 Jun 19;14(6):e0218248. doi: 10.1371/journal.pone.0218248. eCollection 2019.

本文引用的文献

1
A nonparametric surrogate-based test of significance for T-wave alternans detection.
IEEE Trans Biomed Eng. 2011 May;58(5):1356-64. doi: 10.1109/TBME.2010.2047859. Epub 2010 Apr 19.
2
An artificial vector model for generating abnormal electrocardiographic rhythms.
Physiol Meas. 2010 May;31(5):595-609. doi: 10.1088/0967-3334/31/5/001. Epub 2010 Mar 22.
4
Robust parameter extraction for decision support using multimodal intensive care data.
Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):411-29. doi: 10.1098/rsta.2008.0157.
6
Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter.
Physiol Meas. 2008 Jan;29(1):15-32. doi: 10.1088/0967-3334/29/1/002. Epub 2007 Dec 10.
8
Study of the relationship between pulse photoplethysmography amplitude decrease events and sleep apneas in children.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3887-90. doi: 10.1109/IEMBS.2006.259997.
9
A robust method for ECG-based estimation of the respiratory frequency during stress testing.
IEEE Trans Biomed Eng. 2006 Jul;53(7):1273-85. doi: 10.1109/TBME.2006.871888.
10
A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram.
Comput Biol Med. 2007 Mar;37(3):305-14. doi: 10.1016/j.compbiomed.2006.02.002. Epub 2006 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验