Schools of Mathematical Sciences and Biological and Medical Sciences, College of Sciences Rochester Institute of Technology, Rochester, NY 14623-5603, USA.
CBE Life Sci Educ. 2010 Fall;9(3):217-26. doi: 10.1187/cbe.09-09-0067.
BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.
BIO2010 提出了提高生物学学生数学教育背景的目标。微阵列高维数据的分析和解释可能极具挑战性,最好由统计学家和生物学家以协作的方式共同完成。我们建立了这样的合作关系,并设计了一门关于微阵列数据分析的课程。我们开始使用基因组主动教学联盟 (GCAT) 的材料和微阵列基因组和聚类工具软件,并添加了 R 统计软件以及 Bioconductor 包。根据学生的反馈,我们在课堂上对一个微阵列数据集进行了全面分析,从预处理到基因发现,再到使用后一种软件进行途径分析。一个课堂作业是让学生进行类似的分析,他们可以分析自己的数据或发表在期刊论文中的数据。这个练习展示了过滤、预处理和不同的标准化方法对最终数据集的基因包含的影响。我们得出的结论是,这门课程实现了使学生具备分析微阵列实验数据的技能的目标。我们提供关于协作教学的见解,以及其他教师如何设计和实施类似的跨学科课程。