INSERM UMR-S 665, DSIMB, Paris, France.
Biophys J. 2010 Sep 8;99(5):1455-64. doi: 10.1016/j.bpj.2010.05.039.
Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental (2)H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.
跨膜螺旋肽的取向、动力学和堆积是膜蛋白结构、动力学和功能的重要决定因素。由于难以通过研究真实的膜蛋白来研究这些方面,因此广泛使用模型跨膜螺旋肽。NMR 实验提供了关于肽的取向和动力学的信息,但它们需要解释运动模型。不同的运动模型根据螺旋取向和动力学对四极分裂(QS)给出不同的解释。在这里,我们使用粗粒(CG)分子动力学(MD)模拟来研究一种众所周知的模型跨膜肽 WALP23 在不同疏水性匹配/不匹配条件下的行为。我们将实验(2)H-NMR QS(直接在实验中测量)以及螺旋倾斜角和方位旋转(未直接测量)与 CG MD 模拟结果进行比较。对于 QS,与以前的原子模拟相比,一致性要好得多,这表明平衡采样对于重现实验 QS 比原子细节更为重要。螺旋取向的计算证实,QS 的解释取决于所使用的运动模型。我们的模拟表明,WALP23 可以形成二聚体,其在反平行排列中更稳定。反平行取向的偏好不仅源于静电相互作用,还源于更好的表面互补性。在大多数情况下,与单体和平行二聚体相比,单体和反平行二聚体的混合物与 NMR 数据的一致性更好。CG MD 模拟允许在不假设运动模型的情况下预测螺旋取向和动力学,并解释 QS 数据。