Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden.
Microb Cell Fact. 2010 Sep 13;9:68. doi: 10.1186/1475-2859-9-68.
The microbes Escherichia coli and Pichia pastoris are convenient prokaryotic and eukaryotic hosts, respectively, for the recombinant production of proteins at laboratory scales. A comparative study was performed to evaluate a range of constructs and process parameters for the heterologous intra- and extracellular expression of genes encoding the industrially relevant enzyme galactose 6-oxidase (EC 1.1.3.9) from the fungus Fusarium graminearum. In particular, the wild-type galox gene from F. graminearum, an optimized variant for E. coli and a codon-optimized gene for P. pastoris were expressed without the native pro-sequence, but with a His-tag either at the N- or the C-terminus of the enzyme.
The intracellular expression of a codon-optimized gene with an N-terminal His10-tag in E. coli, using the pET16b+ vector and BL21DE3 cells, resulted in a volumetric productivity of 180 U·L-1·h-1. The intracellular expression of the wild-type gene from F. graminearum, using the pPIC3.5 vector and the P. pastoris strain GS115, was poor, resulting in a volumetric productivity of 120 U·L-1·h-1. Furthermore, this system did not tolerate an N-terminal His10-tag, thus rendering isolation of the enzyme from the complicated mixture difficult. The highest volumetric productivity (610 U·L-1·h-1) was achieved when the wild-type gene from F. graminearum was expressed extracellularly in the P. pastoris strain SMD1168H using the pPICZα-system. A C-terminal His6-tag did not significantly affect the production of the enzyme, thus enabling simple purification by immobilized metal ion affinity chromatography. Notably, codon-optimisation of the galox gene for expression in P. pastoris did not result in a higher product yield (g protein·L-1 culture). Effective activation of the enzyme to generate the active-site radical copper complex could be equally well achieved by addition of CuSO4 directly in the culture medium or post-harvest.
The results indicate that intracellular production in E. coli and extracellular production in P. pastoris comprise a complementary pair of systems for the production of GalOx. The prokaryotic host is favored for high-throughput screening, for example in the development of improved enzymes, while the yeast system is ideal for production scale-up for enzyme applications.
大肠杆菌(Escherichia coli)和巴斯德毕赤酵母(Pichia pastoris)分别是原核生物和真核生物中方便的宿主,可用于在实验室规模下对蛋白质进行重组生产。本研究比较了一系列构建体和工艺参数,用于异源细胞内和细胞外表达真菌禾谷镰刀菌(Fusarium graminearum)中编码工业相关酶半乳糖 6-氧化酶(EC 1.1.3.9)的基因。特别是,从禾谷镰刀菌中表达了野生型 galox 基因、优化后的大肠杆菌变体和毕赤酵母中的密码子优化基因,它们都没有天然的前导序列,但在酶的 N 端或 C 端带有 His 标签。
在大肠杆菌中使用 pET16b+载体和 BL21DE3 细胞,对带有 N 端 His10 标签的密码子优化基因进行细胞内表达,其比生产率为 180 U·L-1·h-1。使用 pPIC3.5 载体和毕赤酵母菌株 GS115 对禾谷镰刀菌的野生型基因进行细胞内表达效果不佳,比生产率仅为 120 U·L-1·h-1。此外,该系统不能耐受 N 端 His10 标签,因此难以从复杂混合物中分离出酶。当使用 pPICZα 系统在毕赤酵母菌株 SMD1168H 中外源表达禾谷镰刀菌的野生型基因时,达到了最高的比生产率(610 U·L-1·h-1)。C 端 His6 标签对酶的产生没有显著影响,因此可以通过固定化金属离子亲和层析进行简单的纯化。值得注意的是,对 galox 基因进行密码子优化以在毕赤酵母中表达并没有导致产物产量(g 蛋白·L-1 培养物)的提高。通过直接在培养基中添加 CuSO4 或收获后添加,都可以有效地激活酶以产生活性部位的自由基铜配合物。
结果表明,大肠杆菌中的细胞内生产和毕赤酵母中的细胞外生产构成了 GalOx 生产的互补系统。在高通量筛选等方面,原核宿主更有优势,例如在开发改良酶时;而酵母系统则非常适合用于酶应用的生产规模放大。