Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.
Biostatistics. 2011 Apr;12(2):354-68. doi: 10.1093/biostatistics/kxq061. Epub 2010 Sep 21.
The hazard ratio provides a natural target for assessing a treatment effect with survival data, with the Cox proportional hazards model providing a widely used special case. In general, the hazard ratio is a function of time and provides a visual display of the temporal pattern of the treatment effect. A variety of nonproportional hazards models have been proposed in the literature. However, available methods for flexibly estimating a possibly time-dependent hazard ratio are limited. Here, we investigate a semiparametric model that allows a wide range of time-varying hazard ratio shapes. Point estimates as well as pointwise confidence intervals and simultaneous confidence bands of the hazard ratio function are established under this model. The average hazard ratio function is also studied to assess the cumulative treatment effect. We illustrate corresponding inference procedures using coronary heart disease data from the Women's Health Initiative estrogen plus progestin clinical trial.
风险比为评估生存数据的治疗效果提供了一个自然的目标,Cox 比例风险模型提供了一个广泛使用的特例。一般来说,风险比是时间的函数,并提供了治疗效果的时间模式的直观显示。文献中已经提出了多种非比例风险模型。然而,灵活估计可能时变风险比的可用方法是有限的。在这里,我们研究了一个允许广泛的时变风险比形状的半参数模型。在此模型下建立了风险比函数的点估计以及点估计置信区间和同时置信带。还研究了平均风险比函数以评估累积治疗效果。我们使用来自妇女健康倡议雌激素加孕激素临床试验的冠心病数据来说明相应的推断程序。