Suppr超能文献

使用 SVM 模型预测严重脓毒症。

Prediction of severe sepsis using SVM model.

机构信息

National Chung-Cheng University, Chia-Yi, Taiwan.

出版信息

Adv Exp Med Biol. 2010;680:75-81. doi: 10.1007/978-1-4419-5913-3_9.

Abstract

Sepsis is an infectious condition that results in damage to organs. This paper proposes a severe sepsis model based on Support Vector Machine (SVM) for predicting whether a septic patient will become severe sepsis. We chose several clinical physiology of sepsis for identifying the features used for SVM. Based on the model, a medical decision support system is proposed for clinical diagnosis. The results show that the prognosis of a septic patient can be more precisely predicted than ever. We conduct several experiments, whose results demonstrate that the proposed model provides high accuracy and high sensitivity and can be used as a reminding system to provide in-time treatment in ICU.

摘要

脓毒症是一种感染性疾病,会导致器官损伤。本文提出了一种基于支持向量机(SVM)的严重脓毒症模型,用于预测脓毒症患者是否会发展为严重脓毒症。我们选择了几种脓毒症的临床生理学指标来识别用于 SVM 的特征。基于该模型,提出了一种用于临床诊断的医学决策支持系统。结果表明,脓毒症患者的预后可以比以往更准确地预测。我们进行了多项实验,结果表明,所提出的模型具有很高的准确性和很高的灵敏度,可以作为提醒系统,在 ICU 中提供及时的治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验