Suppr超能文献

联合学习外观和变换以预测脑磁共振图像配准

Joint learning of appearance and transformation for predicting brain MR image registration.

作者信息

Wang Qian, Kim Minjeong, Wu Guorong, Shen Dinggang

出版信息

Inf Process Med Imaging. 2013;23:499-510. doi: 10.1007/978-3-642-38868-2_42.

Abstract

We propose a new approach to register the subject image with the template by leveraging a set of training images that are pre-aligned to the template. We argue that, if voxels in the subject and the training images share similar local appearances and transformations, they may have common correspondence in the template. In this way, we learn the sparse representation of certain subject voxel to reveal several similar candidate voxels in the training images. Each selected training candidate can bridge the correspondence from the subject voxel to the template space, thus predicting the transformation associated with the subject voxel at the confidence level that relates to the learned sparse coefficient. Following this strategy, we first predict transformations at selected key points, and retain multiple predictions on each key point (instead of allowing a single correspondence only). Then, by utilizing all key points and their predictions with varying confidences, we adaptively reconstruct the dense transformation field that warps the subject to the template. For robustness and computation speed, we embed the prediction-reconstruction protocol above into a multi-resolution hierarchy. In the final, we efficiently refine our estimated transformation field via existing registration method. We apply our method to registering brain MR images, and conclude that the proposed method is competent to improve registration performances in terms of time cost as well as accuracy.

摘要

我们提出了一种新方法,通过利用一组预先与模板对齐的训练图像,将主体图像与模板进行配准。我们认为,如果主体和训练图像中的体素具有相似的局部外观和变换,那么它们在模板中可能具有共同的对应关系。通过这种方式,我们学习特定主体体素的稀疏表示,以揭示训练图像中的几个相似候选体素。每个选定的训练候选体素都可以建立从主体体素到模板空间的对应关系,从而以与学习到的稀疏系数相关的置信度预测与主体体素相关的变换。按照这种策略,我们首先在选定的关键点预测变换,并在每个关键点保留多个预测(而不是只允许单一对应关系)。然后,通过利用所有关键点及其具有不同置信度的预测,我们自适应地重建将主体扭曲到模板的密集变换场。为了提高鲁棒性和计算速度,我们将上述预测 - 重建协议嵌入到多分辨率层次结构中。最后,我们通过现有的配准方法有效地细化我们估计的变换场。我们将我们的方法应用于脑部磁共振图像的配准,并得出结论,所提出的方法在时间成本和准确性方面都能够提高配准性能。

相似文献

1
Joint learning of appearance and transformation for predicting brain MR image registration.
Inf Process Med Imaging. 2013;23:499-510. doi: 10.1007/978-3-642-38868-2_42.
2
Predict brain MR image registration via sparse learning of appearance and transformation.
Med Image Anal. 2015 Feb;20(1):61-75. doi: 10.1016/j.media.2014.10.007. Epub 2014 Nov 8.
3
A generalized learning based framework for fast brain image registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
4
A general fast registration framework by learning deformation-appearance correlation.
IEEE Trans Image Process. 2012 Apr;21(4):1823-33. doi: 10.1109/TIP.2011.2170698. Epub 2011 Oct 6.
5
Multichannel image registration by feature-based information fusion.
IEEE Trans Med Imaging. 2011 Mar;30(3):707-20. doi: 10.1109/TMI.2010.2093908. Epub 2010 Nov 22.
6
Robust anatomical landmark detection for MR brain image registration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):186-93. doi: 10.1007/978-3-319-10404-1_24.
7
Learning best features for deformable registration of MR brains.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):179-87. doi: 10.1007/11566489_23.
8
Groupwise registration by hierarchical anatomical correspondence detection.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
9
A novel longitudinal atlas construction framework by groupwise registration of subject image sequences.
Inf Process Med Imaging. 2011;22:283-95. doi: 10.1007/978-3-642-22092-0_24.
10
Robust anatomical landmark detection with application to MR brain image registration.
Comput Med Imaging Graph. 2015 Dec;46 Pt 3(0 3):277-90. doi: 10.1016/j.compmedimag.2015.09.002. Epub 2015 Sep 25.

引用本文的文献

1
Metric Learning for Image Registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.

本文引用的文献

1
A general fast registration framework by learning deformation-appearance correlation.
IEEE Trans Image Process. 2012 Apr;21(4):1823-33. doi: 10.1109/TIP.2011.2170698. Epub 2011 Oct 6.
2
Iterative multi-atlas-based multi-image segmentation with tree-based registration.
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.
3
Point set registration: coherent point drift.
IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75. doi: 10.1109/TPAMI.2010.46.
4
LEAP: learning embeddings for atlas propagation.
Neuroimage. 2010 Jan 15;49(2):1316-25. doi: 10.1016/j.neuroimage.2009.09.069. Epub 2009 Oct 6.
5
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
6
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验