Suppr超能文献

用于扩散磁共振成像模拟的组织样本高保真网格。

High-fidelity meshes from tissue samples for diffusion MRI simulations.

作者信息

Panagiotaki Eleftheria, Hall Matt G, Zhang Hui, Siow Bernard, Lythgoe Mark F, Alexander Daniel C

机构信息

Centre for Medical Image Computing, Department of Computer Science, University College London, UK.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):404-11. doi: 10.1007/978-3-642-15745-5_50.

Abstract

This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

摘要

本文提出了一种构建组织微观结构详细几何模型的方法,用于合成逼真的扩散磁共振成像(MRI)数据。我们使用移动立方体算法从共聚焦显微镜图像堆栈构建三维网格模型。在所得网格内的随机游走模拟提供了合成扩散MRI测量值。实验优化了模拟参数和网格的复杂性,以在最小化计算时间的同时实现准确性和可重复性。最后,我们通过与扫描仪数据以及来自仅在二维上变化的简单几何模型和简化网格的合成数据进行比较,评估了来自网格模型的合成数据的质量。结果支持了三维网格相较于更简单模型具有更高的复杂性,尽管对网格分辨率的敏感性相当稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验