Suppr超能文献

HIGS:专性活体营养真菌病原体禾谷布氏白粉菌中的宿主诱导基因沉默。

HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis.

机构信息

Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany.

出版信息

Plant Cell. 2010 Sep;22(9):3130-41. doi: 10.1105/tpc.110.077040. Epub 2010 Sep 30.

Abstract

Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.

摘要

白粉菌是专性活体营养型病原菌,只能在活体宿主上生长,会对数千种植物物种造成损害。尽管它们具有农业重要性,但由于缺乏诱变和转化方案,目前几乎没有关于致病性和毒性基因的直接功能证据。在这里,我们表明,针对真菌转录本的双链或反义 RNA 在大麦(Hordeum vulgare)和小麦(Triticum aestivum)中的积累会影响白粉菌(Blumeria graminis)的发育。通过沉默效应因子 Avra10 获得了宿主诱导基因沉默的概念验证,这导致在不存在匹配抗性基因 Mla10 的情况下,真菌发育减少,但在存在 Mla10 的情况下则没有。通过瞬时表达由于沉默点突变而对 RNA 干扰 (RNAi) 具有抗性的合成基因,可以使真菌从 Avra10 的沉默中恢复。结果表明 RNA 分子从宿主植物进入 B. graminis 的运输,并可能导致针对真菌病原体的基于 RNAi 的作物保护策略。

相似文献

1
HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis.
Plant Cell. 2010 Sep;22(9):3130-41. doi: 10.1105/tpc.110.077040. Epub 2010 Sep 30.
2
Small RNAs from cereal powdery mildew pathogens may target host plant genes.
Fungal Biol. 2018 Nov;122(11):1050-1063. doi: 10.1016/j.funbio.2018.08.008. Epub 2018 Sep 11.
3
Small RNA discovery in the interaction between barley and the powdery mildew pathogen.
BMC Genomics. 2019 Jul 25;20(1):610. doi: 10.1186/s12864-019-5947-z.
5
Broadly Conserved Fungal Effector BEC1019 Suppresses Host Cell Death and Enhances Pathogen Virulence in Powdery Mildew of Barley (Hordeum vulgare L.).
Mol Plant Microbe Interact. 2015 Sep;28(9):968-83. doi: 10.1094/MPMI-02-15-0027-FI. Epub 2015 Aug 26.
9
Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors.
Mol Plant Microbe Interact. 2013 Jun;26(6):633-42. doi: 10.1094/MPMI-01-13-0005-R.
10
Blufensin1 negatively impacts basal defense in response to barley powdery mildew.
Plant Physiol. 2009 Jan;149(1):271-85. doi: 10.1104/pp.108.129031. Epub 2008 Nov 12.

引用本文的文献

1
A novel self-assembled nanocarrier-mediated dsRNA fungicide for broad-spectrum management of .
Mater Today Bio. 2025 Jul 16;34:102099. doi: 10.1016/j.mtbio.2025.102099. eCollection 2025 Oct.
2
Unveiling the underlying complexities in breeding for disease resistance in crop plants: review.
Front Plant Sci. 2025 Jul 15;16:1559751. doi: 10.3389/fpls.2025.1559751. eCollection 2025.
3
Spray-induced gene silencing enables the characterization of gene function during pre-penetration stages in f. sp. .
Front Plant Sci. 2025 Jun 25;16:1628068. doi: 10.3389/fpls.2025.1628068. eCollection 2025.
5
Secretes RsCAP3 to Target Nb14-3-3b, Interfering with Hormone-Mediated Resistance in .
J Agric Food Chem. 2025 Jul 2;73(26):16109-16120. doi: 10.1021/acs.jafc.5c00921. Epub 2025 Jun 23.
8
Trans-Kingdom sRNA Silencing in for Crop Fungal Disease Management.
Pathogens. 2025 Apr 21;14(4):398. doi: 10.3390/pathogens14040398.
10
Classification of and detection techniques for RNAi-induced effects in GM plants.
Front Plant Sci. 2025 Mar 7;16:1535384. doi: 10.3389/fpls.2025.1535384. eCollection 2025.

本文引用的文献

2
Of genes and genomes, needles and haystacks: Blumeria graminis and functionality.
Mol Plant Pathol. 2005 Sep 1;6(5):561-75. doi: 10.1111/j.1364-3703.2005.00303.x.
3
Transcriptome analysis of mlo-mediated resistance in the epidermis of barley.
Mol Plant Pathol. 2005 Mar 1;6(2):139-51. doi: 10.1111/j.1364-3703.2005.00271.x.
4
Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.
BMC Genomics. 2010 May 20;11:317. doi: 10.1186/1471-2164-11-317.
5
Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection.
Mol Plant Microbe Interact. 2010 Apr;23(4):497-509. doi: 10.1094/MPMI-23-4-0497.
6
Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.
PLoS One. 2009 Oct 15;4(10):e7463. doi: 10.1371/journal.pone.0007463.
7
Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity.
Nat Cell Biol. 2009 Sep;11(9):1143-9. doi: 10.1038/ncb1929. Epub 2009 Aug 16.
8
Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens.
Science. 2009 May 8;324(5928):748-50. doi: 10.1126/science.1171652.
9
RNA translocation between parasitic plants and their hosts.
Pest Manag Sci. 2009 May;65(5):533-9. doi: 10.1002/ps.1727.
10
Mechanisms of regulated unconventional protein secretion.
Nat Rev Mol Cell Biol. 2009 Feb;10(2):148-55. doi: 10.1038/nrm2617. Epub 2008 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验