Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
Biophys J. 2010 Oct 6;99(7):2038-47. doi: 10.1016/j.bpj.2010.08.016.
Cardiac excitation-contraction coupling is a highly coordinated process that is controlled by protein kinase signaling pathways, including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA). Increased CaMKII expression and activity (as occurs during heart failure) destabilizes EC coupling and may lead to sudden cardiac death. To better understand mechanisms of cardiac CaMKII function, we integrated dynamic CaMKII-dependent regulation of key Ca(2+) handling targets with previously validated models of cardiac EC coupling, Ca(2+)/calmodulin-dependent activation of CaMKII, and β-adrenergic activation of PKA. Model predictions are validated against CaMKII-overexpression data from rabbit ventricular myocytes. The model demonstrates how overall changes to Ca(2+) handling during CaMKII overexpression are explained by interactions between individual CaMKII substrates. CaMKII and PKA activities during β-adrenergic stimulation may synergistically facilitate inotropic responses and contribute to a CaMKII-Ca(2+)-CaMKII feedback loop. CaMKII regulated early frequency-dependent acceleration of relaxation and EC coupling gain (which was highly sarcoplasmic reticulum Ca(2+) load-dependent). Additionally, the model identifies CaMKII-dependent ryanodine receptor hyperphosphorylation as a proarrhythmogenic trigger. In summary, we developed a detailed computational model of CaMKII and PKA signaling in cardiac myocytes that provides unique insights into their regulation of normal and pathological Ca(2+) handling.
心脏兴奋-收缩偶联是一个高度协调的过程,由蛋白激酶信号通路控制,包括 Ca(2+)/钙调蛋白依赖性蛋白激酶 II(CaMKII)和蛋白激酶 A(PKA)。CaMKII 表达和活性的增加(如心力衰竭时发生的那样)会破坏 EC 偶联,并可能导致心源性猝死。为了更好地理解心脏 CaMKII 功能的机制,我们将 CaMKII 依赖性调节关键 Ca(2+)处理靶点的动态与先前验证的心脏 EC 偶联、Ca(2+)/钙调蛋白依赖性 CaMKII 激活和β-肾上腺素能激活 PKA 的模型相结合。模型预测结果与兔心室肌细胞中 CaMKII 过表达的数据进行了验证。该模型展示了在 CaMKII 过表达期间,整体 Ca(2+)处理的变化如何通过单个 CaMKII 底物之间的相互作用来解释。β-肾上腺素能刺激期间 CaMKII 和 PKA 的活性可能协同促进变力反应,并有助于 CaMKII-Ca(2+)-CaMKII 反馈回路。CaMKII 调节早期频率依赖性加速松弛和 EC 偶联增益(高度依赖肌浆网 Ca(2+)负荷)。此外,该模型确定 CaMKII 依赖性兰尼碱受体过度磷酸化是一种致心律失常的触发因素。总之,我们开发了一种详细的心肌细胞 CaMKII 和 PKA 信号转导的计算模型,为它们对正常和病理 Ca(2+)处理的调节提供了独特的见解。