Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
J Neurosci Methods. 2010 Dec 15;194(1):108-15. doi: 10.1016/j.jneumeth.2010.09.021. Epub 2010 Oct 7.
Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of monitoring dynamic meningeal microcirculations, preferably decoupled from cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ∼2 mm, with an unprecedented imaging sensitivity to blood flow at ∼4 μm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within the meninges and cortex in mice with the cranium left intact. Using a thrombotic mouse model, we show that the OMAG can yield longitudinal measurements of meningeal vascular responses to the insult and can decouple these responses from those in the cortex, giving valuable information regarding the localized hemodynamics along with the dynamic formation of thrombotic event. The results indicate that OMAG can be a useful tool to study therapeutic strategies in preclinical animal models in order to mitigate various pathologies that are mainly related to the meningeal circulations.
脑膜内的微循环异常在许多神经疾病中很常见。因此,需要有一种能够监测脑膜微循环动态的成像方法,最好与皮质血流解耦。光学微血管造影(OMAG)是一种最近开发的无标记成像方法,能够以高达约 2 毫米的成像深度生成微循环组织床内动态血流灌注的 3D 图像,对血流具有前所未有的成像灵敏度,可达约 4 μm/s。在本文中,我们证明了 OMAG 在对颅骨完整的小鼠脑膜和皮层进行成像时的实用性,可在毛细血管水平分辨率下显示脑膜内的详细血流分布。使用血栓形成小鼠模型,我们表明 OMAG 可以对脑膜血管对损伤的反应进行纵向测量,并将这些反应与皮层的反应解耦,从而提供有关局部血液动力学以及血栓形成事件的动态形成的有价值信息。结果表明,OMAG 可以成为研究临床前动物模型中治疗策略的有用工具,以减轻主要与脑膜循环相关的各种病理。