Parietal Project Team, INRIA Saclay Ile-de-France, Orsay, France.
Neuroimage. 2011 Feb 1;54(3):1930-41. doi: 10.1016/j.neuroimage.2010.09.087. Epub 2010 Oct 7.
This work proposes to use magnetoencephalography (MEG) and electroencephalography (EEG) source imaging to provide cinematic representations of the temporal dynamics of cortical activations. Cortical activation maps, seen as images of the active brain, are scalar maps defined at the vertices of a triangulated cortical surface. They can be computed from M/EEG data using a linear inverse solver every millisecond. Taking as input these activation maps and exploiting both the graph structure of the cortical mesh and the high sampling rate of M/EEG recordings, neural activations are tracked over time using an efficient graph cut based algorithm. The method estimates the spatiotemporal support of the active brain regions. It consists in computing a minimum cut on a particularly designed weighted graph imposing spatiotemporal regularity constraints on the activation patterns. Each node of the graph is assigned a label (active or non active). The method works globally on the full time-period of interest, can cope with spatially extended active regions and allows the active domain to exhibit topology changes over time. The algorithm is illustrated and validated on synthetic data. Results of the method are provided on two MEG cognitive experiments in the visual and somatosensory cortices, demonstrating the ability of the algorithm to handle various types of data.
本工作旨在利用脑磁图(MEG)和脑电图(EEG)源成像,为皮质激活的时间动态提供电影式表示。皮质激活图,作为活跃大脑的图像,是在三角化皮质表面的顶点定义的标量图。可以使用线性逆解算器每毫秒从 M/EEG 数据中计算出这些激活图。输入这些激活图,并利用皮质网格的图结构和 M/EEG 记录的高采样率,使用基于有效图切割的算法随时间跟踪神经激活。该方法估计活跃脑区的时空支持。它包括在一个特别设计的加权图上计算最小切割,对激活模式施加时空正则化约束。图的每个节点都被分配一个标签(活跃或非活跃)。该方法在整个感兴趣的时间段内全局工作,可以处理空间扩展的活跃区域,并允许活跃区域随时间表现出拓扑变化。该算法在视觉和体感皮质的两个 MEG 认知实验中进行了说明和验证,证明了该算法处理各种类型数据的能力。