Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
Proc Biol Sci. 2011 May 7;278(1710):1365-72. doi: 10.1098/rspb.2010.1888. Epub 2010 Oct 20.
The Euclidean and MAX metrics have been widely used to model cue summation psychophysically and computationally. Both rules happen to be special cases of a more general Minkowski summation rule , where m = 2 and ∞, respectively. In vision research, Minkowski summation with power m = 3-4 has been shown to be a superior model of how subthreshold components sum to give an overall detection threshold. Recently, we have previously reported that Minkowski summation with power m = 2.84 accurately models summation of suprathreshold visual cues in photographs. In four suprathreshold discrimination experiments, we confirm the previous findings with new visual stimuli and extend the applicability of this rule to cue combination in auditory stimuli (musical sequences and phonetic utterances, where m = 2.95 and 2.54, respectively) and cross-modal stimuli (m = 2.56). In all cases, Minkowski summation with power m = 2.5-3 outperforms the Euclidean and MAX operator models. We propose that this reflects the summation of neuronal responses that are not entirely independent but which show some correlation in their magnitudes. Our findings are consistent with electrophysiological research that demonstrates signal correlations (r = 0.1-0.2) between sensory neurons when these are presented with natural stimuli.
欧几里得和 MAX 度量已被广泛用于心理物理学和计算模型的线索总和。这两个规则恰好是更一般的闵可夫斯基求和规则的特例,其中 m = 2 和 ∞。在视觉研究中,已表明幂次 m = 3-4 的闵可夫斯基求和是亚阈值成分总和给出整体检测阈值的优越模型。最近,我们之前报道过幂次 m = 2.84 的闵可夫斯基求和准确地模拟了照片中超阈值视觉线索的总和。在四个超阈值辨别实验中,我们使用新的视觉刺激物证实了先前的发现,并将该规则的适用性扩展到听觉刺激物(音乐序列和语音发音,其中 m = 2.95 和 2.54)和跨模态刺激物(m = 2.56)中的线索组合。在所有情况下,幂次 m = 2.5-3 的闵可夫斯基求和都优于欧几里得和 MAX 运算符模型。我们提出,这反映了神经元反应的总和,这些反应并非完全独立,但在其幅度上存在一定的相关性。我们的发现与电生理研究一致,该研究表明,当呈现自然刺激时,感觉神经元之间存在信号相关性(r = 0.1-0.2)。