Suppr超能文献

使用光刻纳米粒子进行生物分子的 SERS 检测,以实现可重复使用的 SERS 生物传感器。

SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor.

机构信息

Laboratoire CSPBAT (FRE 3043), UFR SMBH, Université Paris XIII, Bobigny, France.

出版信息

Nanotechnology. 2010 Nov 26;21(47):475501. doi: 10.1088/0957-4484/21/47/475501. Epub 2010 Oct 29.

Abstract

In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10(5) for BSA and 10(7) for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.

摘要

在本文中,我们强调了使用基于电子束光刻(EBL)获得的金纳米柱的表面增强拉曼散射(SERS)衬底对牛血清白蛋白和核糖核酸酶-A 的精确光谱检测。纳米柱的直径为 100 至 180nm,间隙为 200nm。我们证明,通过优化光刻金纳米柱的尺寸和形状,我们可以在低浓度下获得蛋白质的 SERS 光谱。这项 SERS 研究使我们能够估计蛋白质拉曼光谱中重要波段的高增强因子(BSA 为 10^5,RNase-A 为 10^7),测量浓度为 1mM。我们证明,为了达到最高的增强效果,有必要优化 SERS 信号,而优化的主要参数是 LSPR 位置。LSPR 必须位于激光激发波长(632.8nm)和所考虑的拉曼带的位置之间。我们的研究强调了金纳米柱阵列在蛋白质光谱检测中的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验