Mihalaş Stefan, Niebur Ernst
Zanvyl Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
Neural Comput. 2009 Mar;21(3):704-18. doi: 10.1162/neco.2008.12-07-680.
For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model's rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation.
对于神经网络的模拟,在可模拟的网络规模与用于单个神经元的模型复杂度之间存在权衡。在本研究中,我们描述了一种漏电积分发放模型的推广,该模型能产生多种发放行为,同时在发放之间仍可进行解析求解。对于不同的参数值,该模型会产生发放或爆发、紧张性、相位性或适应性反应、电位后的去极化或超极化等等。该模型由一组可对角化的线性微分方程组成,描述膜电位的时间演化、一个可变阈值以及任意数量的发放诱导电流。当电位达到阈值时,这些变量中的每一个都会通过更新规则进行修改。所使用的变量直观且具有生物学意义。该模型丰富的行为并非源于线性的微分方程,而是源于复杂的更新规则。这个单神经元模型可以使用类似于标准积分发放模型的算法来实现。它与事件驱动算法自然匹配,在事件驱动算法中,发放时间是作为多项式方程的解而获得的。