Suppr超能文献

一种广义线性积分发放神经模型产生多样的放电行为。

A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.

作者信息

Mihalaş Stefan, Niebur Ernst

机构信息

Zanvyl Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Neural Comput. 2009 Mar;21(3):704-18. doi: 10.1162/neco.2008.12-07-680.

Abstract

For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model's rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation.

摘要

对于神经网络的模拟,在可模拟的网络规模与用于单个神经元的模型复杂度之间存在权衡。在本研究中,我们描述了一种漏电积分发放模型的推广,该模型能产生多种发放行为,同时在发放之间仍可进行解析求解。对于不同的参数值,该模型会产生发放或爆发、紧张性、相位性或适应性反应、电位后的去极化或超极化等等。该模型由一组可对角化的线性微分方程组成,描述膜电位的时间演化、一个可变阈值以及任意数量的发放诱导电流。当电位达到阈值时,这些变量中的每一个都会通过更新规则进行修改。所使用的变量直观且具有生物学意义。该模型丰富的行为并非源于线性的微分方程,而是源于复杂的更新规则。这个单神经元模型可以使用类似于标准积分发放模型的算法来实现。它与事件驱动算法自然匹配,在事件驱动算法中,发放时间是作为多项式方程的解而获得的。

相似文献

2
Silicon modeling of the Mihalaş-Niebur neuron.米哈拉斯-尼布尔神经元的硅模型
IEEE Trans Neural Netw. 2011 Dec;22(12):1915-27. doi: 10.1109/TNN.2011.2167020. Epub 2011 Oct 10.
3
Exact mean-field models for spiking neural networks with adaptation.具有适应机制的尖峰神经网络的精确平均场模型。
J Comput Neurosci. 2022 Nov;50(4):445-469. doi: 10.1007/s10827-022-00825-9. Epub 2022 Jul 14.
4
Firing patterns in the adaptive exponential integrate-and-fire model.自适应指数积分发放模型中的发放模式。
Biol Cybern. 2008 Nov;99(4-5):335-47. doi: 10.1007/s00422-008-0264-7. Epub 2008 Nov 15.
5
Low-dimensional model for adaptive networks of spiking neurons.
Phys Rev E. 2025 Jan;111(1-1):014422. doi: 10.1103/PhysRevE.111.014422.
7
Hybrid integrate-and-fire model of a bursting neuron.爆发神经元的混合积分发放模型。
Neural Comput. 2003 Dec;15(12):2843-62. doi: 10.1162/089976603322518768.

引用本文的文献

1
Neuron signal attenuation activation mechanism for deep learning.用于深度学习的神经元信号衰减激活机制。
Patterns (N Y). 2024 Dec 16;6(1):101117. doi: 10.1016/j.patter.2024.101117. eCollection 2025 Jan 10.
2
Inference of network connectivity from temporally binned spike trains.从时间分箱的尖峰火车推断网络连通性。
J Neurosci Methods. 2024 Apr;404:110073. doi: 10.1016/j.jneumeth.2024.110073. Epub 2024 Feb 2.
6
Embodied neuromorphic intelligence.具身神经形态智能。
Nat Commun. 2022 Feb 23;13(1):1024. doi: 10.1038/s41467-022-28487-2.

本文引用的文献

1
Simple model of spiking neurons.脉冲神经元的简单模型。
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验