Suppr超能文献

接触法和浸水法测量小儿白内障眼的眼轴长度。

Axial length measurements by contact and immersion techniques in pediatric eyes with cataract.

机构信息

Storm Eye Institute, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425-5536, USA.

出版信息

Ophthalmology. 2011 Mar;118(3):498-502. doi: 10.1016/j.ophtha.2010.06.042. Epub 2010 Oct 29.

Abstract

PURPOSE

To compare axial length measurements by contact and immersion techniques in pediatric cataractous eyes.

DESIGN

Prospective, comparative case series.

PARTICIPANTS

In this prospective study, 50 cataractous eyes of 50 children were enrolled. In bilateral cataract, only 1 eye was selected to avoid a correlation effect in statistical analyses.

METHODS

Axial length was measured by both contact and immersion techniques for all eyes, randomized as to which to perform first to avoid measurement bias.

MAIN OUTCOME MEASURES

Axial length measured by contact and immersion techniques and the difference between contact and immersion technique axial length measurements.

RESULTS

Mean age±standard deviation at cataract surgery and at axial length measurement was 3.87±3.72 years. Axial length measurement by contact technique was significantly shorter as compared with immersion technique (21.36±3.04 mm and 21.63±3.09 mm, respectively; P<0.001). Axial length measurements using the contact technique were on an average 0.27 mm shorter than those obtained using the immersion technique. Forty-two eyes (84%) had shorter axial length when measured using the contact technique as compared with the immersion technique. Lens thickness measurement by contact technique was not significantly different from that of immersion technique (3.61±0.74 and 3.60±0.67 mm, respectively; P = 0.673). Anterior chamber depth measurement was significantly more shallow with the contact technique (3.39±0.59 mm and 3.69±0.54 mm, respectively; P<0.001). Intraocular lens power needed for emmetropia was significantly different (28.68 diopters [D] vs. 27.63 D; P<0.001).

CONCLUSIONS

Contact A-scan measurements yielded shorter axial length than immersion A-scan measurements. This difference was mainly the result of the anterior chamber depth rather than the lens thickness value. During intraocular lens (IOL) power calculation, if axial length measured by contact technique is used, it will result in the use of an average 1-D stronger IOL power than is actually required. This can lead to induced myopia in the postoperative refraction.

摘要

目的

比较接触式和浸润式技术在小儿白内障眼中的眼轴测量值。

设计

前瞻性、对照病例系列研究。

参与者

在这项前瞻性研究中,纳入了 50 名儿童的 50 只白内障眼。在双眼白内障中,仅选择 1 只眼进行测量,以避免统计分析中的相关性影响。

方法

所有眼均采用接触式和浸润式技术进行眼轴测量,两种方法的测量顺序随机,以避免测量偏倚。

主要观察指标

接触式和浸润式技术测量的眼轴长度以及接触式和浸润式技术测量的眼轴长度差值。

结果

白内障手术时和眼轴测量时的平均年龄(标准差)为 3.87(3.72)岁。接触式技术测量的眼轴长度明显短于浸润式技术(分别为 21.36(3.04)mm 和 21.63(3.09)mm;P<0.001)。接触式技术测量的眼轴长度平均比浸润式技术短 0.27mm。与浸润式技术相比,42 只眼(84%)采用接触式技术测量时眼轴更短。接触式技术测量的晶状体厚度与浸润式技术无显著差异(分别为 3.61(0.74)mm 和 3.60(0.67)mm;P=0.673)。接触式技术测量的前房深度明显较浅(分别为 3.39(0.59)mm 和 3.69(0.54)mm;P<0.001)。用于正视眼的人工晶状体屈光度也显著不同(28.68 屈光度[D]比 27.63 D;P<0.001)。

结论

接触式 A 扫描测量的眼轴长度短于浸润式 A 扫描测量。这种差异主要是由于前房深度而不是晶状体厚度值造成的。在人工晶状体(IOL)屈光度计算中,如果使用接触式技术测量的眼轴长度,将会导致使用比实际需要的平均 1 屈光度更强的 IOL 屈光度。这可能导致术后屈光度出现近视。

相似文献

1
Axial length measurements by contact and immersion techniques in pediatric eyes with cataract.
Ophthalmology. 2011 Mar;118(3):498-502. doi: 10.1016/j.ophtha.2010.06.042. Epub 2010 Oct 29.
3
Axial length measurement techniques in pediatric eyes with cataract.
Saudi J Ophthalmol. 2012 Jan;26(1):13-7. doi: 10.1016/j.sjopt.2011.11.002.
4
Agreement between lens thickness measurements by ultrasound immersion biometry and optical biometry.
J Cataract Refract Surg. 2018 Dec;44(12):1463-1468. doi: 10.1016/j.jcrs.2018.07.057. Epub 2018 Sep 29.
5
Comparison of contact and immersion techniques for axial length measurement and implant power calculation.
J Cataract Refract Surg. 1989 Jul;15(4):425-8. doi: 10.1016/s0886-3350(89)80062-8.
6
Accuracy of IOL calculations in children: a comparison of immersion versus contact A-scan biometery.
J AAPOS. 2008 Oct;12(5):440-4. doi: 10.1016/j.jaapos.2008.03.016. Epub 2008 Jul 3.
7
Biometry data from caucasian and african-american cataractous pediatric eyes.
Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4671-8. doi: 10.1167/iovs.07-0267.

引用本文的文献

1
Refractive Error and Axial Length (REAL) Study: Feasibility of a population study in the United States.
Optom Vis Sci. 2025 May 1;102(5):280-288. doi: 10.1097/OPX.0000000000002258. Epub 2025 Apr 28.
2
Pediatric IOL power calculation: Factors and considerations.
Indian J Ophthalmol. 2025 Mar 1;73(3):312-319. doi: 10.4103/IJO.IJO_1205_24. Epub 2025 Feb 26.
4
Axial Length Changes Following Surgical Intervention in Children With Primary Congenital Glaucoma.
Front Ophthalmol (Lausanne). 2021 Nov 1;1:747801. doi: 10.3389/fopht.2021.747801. eCollection 2021.
5
Anterior Chamber Depth and Lens Thickness Measurements in Pediatric Eyes: Ultrasound Biomicroscopy Versus Immersion A-Scan Ultrasonography.
Ultrasound Med Biol. 2024 Sep;50(9):1346-1351. doi: 10.1016/j.ultrasmedbio.2024.05.009. Epub 2024 Jun 12.
6
A Morphometric Study of the Pars Plana of the Ciliary Body in Human Cadaver Eyes.
Vision (Basel). 2024 May 8;8(2):30. doi: 10.3390/vision8020030.
7
Long-term Results of Congenital Cataract Surgery with Primary Intraocular Lens Implantation: A Case-Control Study of Three Age Groups.
J Curr Ophthalmol. 2022 Nov 30;34(3):290-296. doi: 10.4103/joco.joco_245_21. eCollection 2022 Jul-Sep.
8
The accuracy of intraocular lens calculation varies by age in the Infant Aphakia Treatment Study.
J AAPOS. 2022 Jun;26(3):143-145. doi: 10.1016/j.jaapos.2022.02.004. Epub 2022 May 6.
9
Comparison of immersion ultrasound and low coherence reflectometry for ocular biometry in cataract patients.
Int J Ophthalmol. 2018 Jun 18;11(6):966-969. doi: 10.18240/ijo.2018.06.11. eCollection 2018.
10
Precision of a new ocular biometer in children and comparison with IOLMaster.
Sci Rep. 2018 Jan 22;8(1):1304. doi: 10.1038/s41598-018-19605-6.

本文引用的文献

1
Accuracy of biometry in pediatric cataract extraction with primary intraocular lens implantation.
J Cataract Refract Surg. 2008 Nov;34(11):1940-7. doi: 10.1016/j.jcrs.2008.07.019.
2
Accuracy of IOL calculations in children: a comparison of immersion versus contact A-scan biometery.
J AAPOS. 2008 Oct;12(5):440-4. doi: 10.1016/j.jaapos.2008.03.016. Epub 2008 Jul 3.
3
Keratometry in pediatric eyes with cataract.
Arch Ophthalmol. 2008 Jan;126(1):38-42. doi: 10.1001/archophthalmol.2007.22.
4
Biometry data from caucasian and african-american cataractous pediatric eyes.
Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4671-8. doi: 10.1167/iovs.07-0267.
5
Intraocular lens power calculation in children.
Surv Ophthalmol. 2007 Sep-Oct;52(5):474-82. doi: 10.1016/j.survophthal.2007.06.010.
6
Paediatric pseudophakia: analysis of intraocular lens power and myopic shift.
Clin Exp Ophthalmol. 2007 Apr;35(3):244-51. doi: 10.1111/j.1442-9071.2006.01446.x.
7
Refractive outcomes after cataract surgery with primary lens implantation in infants.
Br J Ophthalmol. 2006 Nov;90(11):1386-9. doi: 10.1136/bjo.2006.097469. Epub 2006 Jul 26.
8
Changes in refraction and ocular dimensions after cataract surgery and primary intraocular lens implantation in infants.
J Cataract Refract Surg. 2006 Jul;32(7):1104-8. doi: 10.1016/j.jcrs.2006.01.097.
9
New techniques and technologies for pediatric cataract surgery.
Curr Opin Ophthalmol. 2005 Oct;16(5):289-93. doi: 10.1097/01.icu.0000177415.17149.b5.
10
Contact versus immersion biometry of axial length before cataract surgery.
J Cataract Refract Surg. 2003 Nov;29(11):2195-8. doi: 10.1016/s0886-3350(03)00224-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验