Suppr超能文献

设计和工程进化稳健的遗传电路。

Designing and engineering evolutionary robust genetic circuits.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

J Biol Eng. 2010 Nov 1;4:12. doi: 10.1186/1754-1611-4-12.

Abstract

BACKGROUND

One problem with engineered genetic circuits in synthetic microbes is their stability over evolutionary time in the absence of selective pressure. Since design of a selective environment for maintaining function of a circuit will be unique to every circuit, general design principles are needed for engineering evolutionary robust circuits that permit the long-term study or applied use of synthetic circuits.

RESULTS

We first measured the stability of two BioBrick-assembled genetic circuits propagated in Escherichia coli over multiple generations and the mutations that caused their loss-of-function. The first circuit, T9002, loses function in less than 20 generations and the mutation that repeatedly causes its loss-of-function is a deletion between two homologous transcriptional terminators. To measure the effect between transcriptional terminator homology levels and evolutionary stability, we re-engineered six versions of T9002 with a different transcriptional terminator at the end of the circuit. When there is no homology between terminators, the evolutionary half-life of this circuit is significantly improved over 2-fold and is independent of the expression level. Removing homology between terminators and decreasing expression level 4-fold increases the evolutionary half-life over 17-fold. The second circuit, I7101, loses function in less than 50 generations due to a deletion between repeated operator sequences in the promoter. This circuit was re-engineered with different promoters from a promoter library and using a kanamycin resistance gene (kanR) within the circuit to put a selective pressure on the promoter. The evolutionary stability dynamics and loss-of-function mutations in all these circuits are described. We also found that on average, evolutionary half-life exponentially decreases with increasing expression levels.

CONCLUSIONS

A wide variety of loss-of-function mutations are observed in BioBrick-assembled genetic circuits including point mutations, small insertions and deletions, large deletions, and insertion sequence (IS) element insertions that often occur in the scar sequence between parts. Promoter mutations are selected for more than any other biological part. Genetic circuits can be re-engineered to be more evolutionary robust with a few simple design principles: high expression of genetic circuits comes with the cost of low evolutionary stability, avoid repeated sequences, and the use of inducible promoters increases stability. Inclusion of an antibiotic resistance gene within the circuit does not ensure evolutionary stability.

摘要

背景

在合成微生物中,工程遗传电路的一个问题是,在没有选择压力的情况下,它们在进化时间上的稳定性。由于为维持电路功能设计选择性环境将是每个电路所特有的,因此需要一般的设计原则来设计能够实现进化稳健的电路,从而允许对合成电路进行长期研究或应用。

结果

我们首先测量了在大肠杆菌中传代多代的两个 BioBrick 组装的遗传电路的稳定性以及导致其功能丧失的突变。第一个电路 T9002 在不到 20 代的时间内失去功能,并且反复导致其功能丧失的突变是两个同源转录终止子之间的缺失。为了测量转录终止子同源水平与进化稳定性之间的关系,我们重新设计了六个版本的 T9002,在电路的末端使用不同的转录终止子。当终止子之间没有同源性时,该电路的进化半衰期显著提高了 2 倍以上,并且与表达水平无关。去除终止子之间的同源性并将表达水平降低 4 倍可将进化半衰期提高 17 倍以上。第二个电路 I7101 由于启动子中重复操作序列之间的缺失而在不到 50 代的时间内失去功能。该电路使用启动子库中的不同启动子和电路内的卡那霉素抗性基因(kanR)进行了重新设计,从而对启动子施加了选择性压力。描述了所有这些电路的进化稳定性动态和功能丧失突变。我们还发现,平均而言,进化半衰期随表达水平的增加呈指数下降。

结论

在 BioBrick 组装的遗传电路中观察到多种功能丧失突变,包括点突变、小插入和缺失、大片段缺失以及经常发生在部件之间的疤痕序列中的插入序列(IS)元件插入。启动子突变比任何其他生物部分都更受选择。通过一些简单的设计原则,可以对遗传电路进行重新设计,以提高进化稳健性:遗传电路的高表达伴随着低进化稳定性的代价,避免重复序列,使用诱导型启动子可提高稳定性。在电路中包含抗生素抗性基因并不能确保进化稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b80b/2991278/4400f46ea534/1754-1611-4-12-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验