Glover Starla D, Jorge Christine, Liang Li, Valentine Kathleen G, Hammarström Leif, Tommos Cecilia
Department of Chemistry, Ångström Laboratory, Uppsala University , Box 523, SE75120 Uppsala, Sweden.
J Am Chem Soc. 2014 Oct 8;136(40):14039-51. doi: 10.1021/ja503348d. Epub 2014 Aug 14.
Tyrosine oxidation-reduction involves proton-coupled electron transfer (PCET) and a reactive radical state. These properties are effectively controlled in enzymes that use tyrosine as a high-potential, one-electron redox cofactor. The α3Y model protein contains Y32, which can be reversibly oxidized and reduced in voltammetry measurements. Structural and kinetic properties of α3Y are presented. A solution NMR structural analysis reveals that Y32 is the most deeply buried residue in α3Y. Time-resolved spectroscopy using a soluble flash-quench generated Ru(2,2'-bipyridine)3 oxidant provides high-quality Y32-O• absorption spectra. The rate constant of Y32 oxidation (kPCET) is pH dependent: 1.4 × 10(4) M(-1) s(-1) (pH 5.5), 1.8 × 10(5) M(-1) s(-1) (pH 8.5), 5.4 × 10(3) M(-1) s(-1) (pD 5.5), and 4.0 × 10(4) M(-1) s(-1) (pD 8.5). k(H)/k(D) of Y32 oxidation is 2.5 ± 0.5 and 4.5 ± 0.9 at pH(D) 5.5 and 8.5, respectively. These pH and isotope characteristics suggest a concerted or stepwise, proton-first Y32 oxidation mechanism. The photochemical yield of Y32-O• is 28-58% versus the concentration of Ru(2,2'-bipyridine)3. Y32-O• decays slowly, t1/2 in the range of 2-10 s, at both pH 5.5 and 8.5, via radical-radical dimerization as shown by second-order kinetics and fluorescence data. The high stability of Y32-O• is discussed relative to the structural properties of the Y32 site. Finally, the static α3Y NMR structure cannot explain (i) how the phenolic proton released upon oxidation is removed or (ii) how two Y32-O• come together to form dityrosine. These observations suggest that the dynamic properties of the protein ensemble may play an essential role in controlling the PCET and radical decay characteristics of α3Y.
酪氨酸的氧化还原涉及质子耦合电子转移(PCET)和一种反应性自由基状态。这些特性在将酪氨酸用作高电位单电子氧化还原辅因子的酶中得到有效控制。α3Y模型蛋白包含Y32,在伏安法测量中其可被可逆地氧化和还原。本文介绍了α3Y的结构和动力学特性。溶液核磁共振结构分析表明,Y32是α3Y中埋藏最深的残基。使用可溶性闪光猝灭产生的Ru(2,2'-联吡啶)3氧化剂进行的时间分辨光谱提供了高质量的Y32 - O•吸收光谱。Y32氧化的速率常数(kPCET)与pH有关:1.4×10(4) M(-1) s(-1)(pH 5.5)、1.8×10(5) M(-1) s(-1)(pH 8.5)、5.4×10(3) M(-1) s(-1)(pD 5.5)和4.0×10(4) M(-1) s(-1)(pD 8.5)。Y32氧化的k(H)/k(D)在pH(D) 5.5和8.5时分别为2.5±0.5和4.5±0.9。这些pH和同位素特征表明存在协同或逐步的、质子优先的Y32氧化机制。相对于Ru(2,2'-联吡啶)3的浓度,Y32 - O•的光化学产率为28 - 58%。如二级动力学和荧光数据所示,在pH 5.5和8.5时,Y32 - O•均通过自由基 - 自由基二聚化缓慢衰减,半衰期在2 - 10秒范围内。相对于Y32位点的结构特性,讨论了Y32 - O•的高稳定性。最后,静态的α3Y核磁共振结构无法解释(i)氧化时释放的酚质子是如何被去除的,或(ii)两个Y32 - O•如何结合形成二酪氨酸。这些观察结果表明,蛋白质整体的动态特性可能在控制α3Y的PCET和自由基衰减特性中起重要作用。