Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Biophys J. 2012 Mar 21;102(6):1363-71. doi: 10.1016/j.bpj.2012.01.056. Epub 2012 Mar 20.
Early crystal structures of prokaryotic CLC proteins identified three Cl(-) binding sites: internal (S(int)), central (S(cen)), and external (S(ext)). A conserved external GLU (GLU(ex)) residue acts as a gate competing for S(ext). Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLU(ex) competes instead for S(cen). Here, we use molecular dynamics simulations to investigate Cl(-) transport through CmCLC. The gating and Cl(-)/H(+) transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLU(ex) in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl(-) ion from S(ext) to S(int), depending on the Cl(-) occupancy of other sites. Our simulations demonstrate that protonation of GLU(ex) is essential for Cl(-) transport from S(ext) to S(cen). The S(cen) site may be occupied by two Cl(-) ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl(-) ion to translocate from S(cen) to S(int). Binding two Cl(-) ions to S(cen) induces a continuous water wire from S(cen) to the extracellular solution through the side chain of the GLU(ex) gate. This may initiate deprotonation of GLU(ex), which then drives the two Cl(-) ions out of S(cen) toward the intracellular side via two putative Cl(-) transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry.
原核 CLC 蛋白的早期晶体结构确定了三个 Cl(-)结合位点:内部(S(int))、中心(S(cen))和外部(S(ext))。一个保守的外部 GLU(GLU(ex))残基作为一个竞争 S(ext)的门。最近,第一个真核转运蛋白 CmCLC 的晶体结构表明,在这种转运蛋白中,GLU(ex)反而竞争 S(cen)。在这里,我们使用分子动力学模拟来研究 Cl(-) 通过 CmCLC 的转运。通过比较有/无外部势的质子化和去质子化 GLU(ex)的分子动力学模拟,推断出门控和 Cl(-)/H(+)转运循环。适应性偏见力计算用于估计与 Cl(-)离子从 S(ext)到 S(int)的运输相关的平均力势分布,具体取决于其他位点的 Cl(-)占有率。我们的模拟表明,GLU(ex)的质子化对于 Cl(-)从 S(ext)到 S(cen)的运输是必不可少的。由于单个 Cl(-)离子从 S(cen)到 S(int)的迁移能垒(~8 Kcal/mol)较高,因此 S(cen)位点可能同时占据两个 Cl(-)离子。将两个 Cl(-)离子结合到 S(cen)上,通过 GLU(ex)门的侧链,在 S(cen)和细胞外溶液之间诱导形成连续的水线。这可能引发 GLU(ex)的去质子化,然后通过两个假定的 Cl(-)转运途径将两个 Cl(-)离子从 S(cen)驱向细胞内。最后,提出了一个构象循环,以解释交换化学计量。