Suppr超能文献

通过真核 CLC 转运蛋白对 Cl-和水的传输进行分子动力学研究。

Molecular dynamics investigation of Cl- and water transport through a eukaryotic CLC transporter.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Biophys J. 2012 Mar 21;102(6):1363-71. doi: 10.1016/j.bpj.2012.01.056. Epub 2012 Mar 20.

Abstract

Early crystal structures of prokaryotic CLC proteins identified three Cl(-) binding sites: internal (S(int)), central (S(cen)), and external (S(ext)). A conserved external GLU (GLU(ex)) residue acts as a gate competing for S(ext). Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLU(ex) competes instead for S(cen). Here, we use molecular dynamics simulations to investigate Cl(-) transport through CmCLC. The gating and Cl(-)/H(+) transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLU(ex) in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl(-) ion from S(ext) to S(int), depending on the Cl(-) occupancy of other sites. Our simulations demonstrate that protonation of GLU(ex) is essential for Cl(-) transport from S(ext) to S(cen). The S(cen) site may be occupied by two Cl(-) ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl(-) ion to translocate from S(cen) to S(int). Binding two Cl(-) ions to S(cen) induces a continuous water wire from S(cen) to the extracellular solution through the side chain of the GLU(ex) gate. This may initiate deprotonation of GLU(ex), which then drives the two Cl(-) ions out of S(cen) toward the intracellular side via two putative Cl(-) transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry.

摘要

原核 CLC 蛋白的早期晶体结构确定了三个 Cl(-)结合位点:内部(S(int))、中心(S(cen))和外部(S(ext))。一个保守的外部 GLU(GLU(ex))残基作为一个竞争 S(ext)的门。最近,第一个真核转运蛋白 CmCLC 的晶体结构表明,在这种转运蛋白中,GLU(ex)反而竞争 S(cen)。在这里,我们使用分子动力学模拟来研究 Cl(-) 通过 CmCLC 的转运。通过比较有/无外部势的质子化和去质子化 GLU(ex)的分子动力学模拟,推断出门控和 Cl(-)/H(+)转运循环。适应性偏见力计算用于估计与 Cl(-)离子从 S(ext)到 S(int)的运输相关的平均力势分布,具体取决于其他位点的 Cl(-)占有率。我们的模拟表明,GLU(ex)的质子化对于 Cl(-)从 S(ext)到 S(cen)的运输是必不可少的。由于单个 Cl(-)离子从 S(cen)到 S(int)的迁移能垒(~8 Kcal/mol)较高,因此 S(cen)位点可能同时占据两个 Cl(-)离子。将两个 Cl(-)离子结合到 S(cen)上,通过 GLU(ex)门的侧链,在 S(cen)和细胞外溶液之间诱导形成连续的水线。这可能引发 GLU(ex)的去质子化,然后通过两个假定的 Cl(-)转运途径将两个 Cl(-)离子从 S(cen)驱向细胞内。最后,提出了一个构象循环,以解释交换化学计量。

相似文献

1
Molecular dynamics investigation of Cl- and water transport through a eukaryotic CLC transporter.
Biophys J. 2012 Mar 21;102(6):1363-71. doi: 10.1016/j.bpj.2012.01.056. Epub 2012 Mar 20.
3
Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.
4
Probing the conformation of a conserved glutamic acid within the Cl pathway of a CLC H/Cl exchanger.
J Gen Physiol. 2017 Apr 3;149(4):523-529. doi: 10.1085/jgp.201611682. Epub 2017 Feb 28.
5
Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel.
J Chem Theory Comput. 2019 Feb 12;15(2):892-905. doi: 10.1021/acs.jctc.8b01128. Epub 2019 Jan 28.
6
Proton pathways and H+/Cl- stoichiometry in bacterial chloride transporters.
Proteins. 2007 Jul 1;68(1):26-33. doi: 10.1002/prot.21441.
7
Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger.
J Gen Physiol. 2009 Feb;133(2):131-8. doi: 10.1085/jgp.200810112. Epub 2009 Jan 12.
9
The coupled proton transport in the ClC-ec1 Cl(-)/H(+) antiporter.
Biophys J. 2011 Nov 16;101(10):L47-9. doi: 10.1016/j.bpj.2011.10.021. Epub 2011 Nov 15.

引用本文的文献

1
Structural insights into anion selectivity and activation mechanism of LRRC8 volume-regulated anion channels.
Cell Rep. 2023 Aug 29;42(8):112926. doi: 10.1016/j.celrep.2023.112926. Epub 2023 Aug 6.
2
Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating.
PLoS Comput Biol. 2020 Mar 30;16(3):e1007530. doi: 10.1371/journal.pcbi.1007530. eCollection 2020 Mar.
3
Chloride Ion Transport by the CLC Cl/H Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study.
Front Chem. 2018 Mar 13;6:62. doi: 10.3389/fchem.2018.00062. eCollection 2018.
4
Multiscale Kinetic Modeling Reveals an Ensemble of Cl/H Exchange Pathways in ClC-ec1 Antiporter.
J Am Chem Soc. 2018 Feb 7;140(5):1793-1804. doi: 10.1021/jacs.7b11463. Epub 2018 Jan 30.
5
Two Cl Ions and a Glu Compete for a Helix Cage in the CLC Proton/Cl Antiporter.
Biophys J. 2017 Sep 5;113(5):1025-1036. doi: 10.1016/j.bpj.2017.07.025.
6
Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain.
Sci Rep. 2017 Jun 6;7(1):2863. doi: 10.1038/s41598-017-02671-7.
7
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
8
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1.
J Am Chem Soc. 2016 Mar 9;138(9):3066-75. doi: 10.1021/jacs.5b12062. Epub 2016 Feb 26.
10
Computational characterization of structural dynamics underlying function in active membrane transporters.
Curr Opin Struct Biol. 2015 Apr;31:96-105. doi: 10.1016/j.sbi.2015.04.001. Epub 2015 Apr 27.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
The coupled proton transport in the ClC-ec1 Cl(-)/H(+) antiporter.
Biophys J. 2011 Nov 16;101(10):L47-9. doi: 10.1016/j.bpj.2011.10.021. Epub 2011 Nov 15.
3
Charge transport in the ClC-type chloride-proton anti-porter from Escherichia coli.
J Biol Chem. 2011 Jan 28;286(4):2976-86. doi: 10.1074/jbc.M110.163246. Epub 2010 Nov 8.
4
Design, function and structure of a monomeric ClC transporter.
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.
5
Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.
6
A three-state multi-ion kinetic model for conduction properties of ClC-0 chloride channel.
Biophys J. 2010 Jul 21;99(2):464-71. doi: 10.1016/j.bpj.2010.04.047.
7
Proton block of the CLC-5 Cl-/H+ exchanger.
J Gen Physiol. 2010 Jun;135(6):653-9. doi: 10.1085/jgp.201010428.
8
Antiport mechanism for Cl(-)/H(+) in ClC-ec1 from normal-mode analysis.
Biophys J. 2010 Mar 17;98(6):999-1008. doi: 10.1016/j.bpj.2009.11.035.
9
CLC channels and transporters: proteins with borderline personalities.
Biochim Biophys Acta. 2010 Aug;1798(8):1457-64. doi: 10.1016/j.bbamem.2010.02.022. Epub 2010 Feb 24.
10
Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters.
Nat Struct Mol Biol. 2009 Dec;16(12):1294-301. doi: 10.1038/nsmb.1704. Epub 2009 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验