Suppr超能文献

使用分子动力学进行T细胞表位预测和免疫复合物模拟:现状与持续挑战

T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges.

作者信息

Flower Darren R, Phadwal Kanchan, Macdonald Isabel K, Coveney Peter V, Davies Matthew N, Wan Shunzhou

机构信息

Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.

Oxford Biomedical Research Centre, The John Radcliffe Hospital, Room 4503, Corridor 4b, Level 4, Oxford, OX 3 9DU, UK.

出版信息

Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S4. doi: 10.1186/1745-7580-6-S2-S4.

Abstract

Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.

摘要

原子分子动力学为分子和大分子系统的预测与分析提供了强大且灵活的工具。具体而言,它提供了一种手段,通过这种手段我们能够从理论上测量那些无法通过实验测量的东西:由原子和分子组成的复杂系统的动态时间演化。它特别适用于模拟和分析MHC-肽相互作用中其他难以获取的细节,并且在更大规模上适用于免疫突触的模拟。进展相对较为初步,然而真正高性能计算的出现以及粗粒度模拟的发展,现在为我们提供了准确预测热力学参数的希望,以及不仅模拟少数蛋白质,而且进行包含数千个蛋白质分子及其形成的细胞尺度结构的更大、更长模拟的希望。我们在免疫信息学的背景下举例说明这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f68/2981876/2b0978b676ee/1745-7580-6-S2-S4-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验