Suppr超能文献

2009 年流感大流行病毒的传播对温度和湿度的敏感性与 H3N2 季节性流感株相似。

Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain.

机构信息

Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1124, New York, NY 10029, USA.

出版信息

J Virol. 2011 Feb;85(3):1400-2. doi: 10.1128/JVI.02186-10. Epub 2010 Nov 17.

Abstract

In temperate regions of the world, influenza epidemics follow a highly regular seasonal pattern, in which activity peaks in midwinter. Consistently with this epidemiology, we have shown previously that the aerosol transmission of a seasonal H3N2 influenza virus is most efficient under cold, dry conditions. With the 2009 H1N1 pandemic, an exception to the standard seasonality of influenza developed: during 2009 in the Northern Hemisphere, an unusually high level of influenza virus activity over the spring and summer months was followed by a widespread epidemic which peaked in late October, approximately 2.5 months earlier than usual. Herein we show that aerosol transmission of a 2009 pandemic strain shows a dependence on relative humidity and temperature very similar to that of a seasonal H3N2 influenza virus. Our data indicate that the observed differences in the timings of outbreaks with regard to the seasons are most likely not due to intrinsic differences in transmission between the pandemic H1N1 and seasonal H3N2 influenza viruses.

摘要

在世界温带地区,流感疫情呈现出高度规律的季节性模式,其活动高峰期在隆冬。与这种流行病学一致,我们之前已经表明,季节性 H3N2 流感病毒的气溶胶传播在寒冷、干燥的条件下效率最高。然而,2009 年 H1N1 大流行出现了一个例外:在 2009 年北半球,春季和夏季出现了异常高的流感病毒活动水平,随后出现了广泛的疫情,其高峰期在 10 月底,比往常提前了大约 2.5 个月。在此,我们表明,2009 年大流行株的气溶胶传播与季节性 H3N2 流感病毒非常相似,依赖于相对湿度和温度。我们的数据表明,大流行 H1N1 和季节性 H3N2 流感病毒之间在爆发时间上的差异最不可能是由于传播的内在差异造成的。

相似文献

3
Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.
PLoS One. 2010 Nov 23;5(11):e15537. doi: 10.1371/journal.pone.0015537.
4
Environmental Persistence of Influenza Viruses Is Dependent upon Virus Type and Host Origin.
mSphere. 2019 Aug 21;4(4):e00552-19. doi: 10.1128/mSphere.00552-19.
6
Influenza virus transmission is dependent on relative humidity and temperature.
PLoS Pathog. 2007 Oct 19;3(10):1470-6. doi: 10.1371/journal.ppat.0030151.
8
Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment.
Emerg Infect Dis. 2011 Feb;17(2):200-8. doi: 10.3201/eid1702.101268.
9
[Epidemiological features of prevalent influenza A viruses in children with influenza-like illness during the 2004-2017 season in Beijing].
Zhonghua Er Ke Za Zhi. 2018 Jun 2;56(6):429-434. doi: 10.3760/cma.j.issn.0578-1310.2018.06.005.
10

引用本文的文献

1
The impact of temperature and relative humidity on SARS-CoV-2 airborne transmission in Syrian hamsters.
Microbiol Spectr. 2025 Sep 2;13(9):e0097925. doi: 10.1128/spectrum.00979-25. Epub 2025 Jul 22.
2
Monitoring for respiratory viruses among wild canids, Texas.
One Health. 2025 Jan 13;20:100974. doi: 10.1016/j.onehlt.2025.100974. eCollection 2025 Jun.
3
Impact of organic compounds on the stability of influenza A virus in deposited 1-μL droplets.
mSphere. 2024 Sep 25;9(9):e0041424. doi: 10.1128/msphere.00414-24. Epub 2024 Aug 22.
4
Risk assessment of a highly pathogenic H5N1 influenza virus from mink.
Nat Commun. 2024 May 15;15(1):4112. doi: 10.1038/s41467-024-48475-y.
6
Longitudinal surveillance of influenza in Japan, 2006-2016.
Sci Rep. 2022 Jul 14;12(1):12026. doi: 10.1038/s41598-022-15867-3.
8
Viral transmissibility of SARS-CoV-2 accelerates in the winter, similarly to influenza epidemics.
Am J Infect Control. 2022 Sep;50(9):1070-1076. doi: 10.1016/j.ajic.2022.05.009. Epub 2022 May 20.
9
Timing of exposure is critical in a highly sensitive model of SARS-CoV-2 transmission.
PLoS Pathog. 2022 Mar 25;18(3):e1010181. doi: 10.1371/journal.ppat.1010181. eCollection 2022 Mar.
10
Inherent Heterogeneity of Influenza A Virus Stability following Aerosolization.
Appl Environ Microbiol. 2022 Feb 22;88(4):e0227121. doi: 10.1128/aem.02271-21. Epub 2022 Jan 5.

本文引用的文献

2
Absolute humidity and the seasonal onset of influenza in the continental United States.
PLoS Biol. 2010 Feb 23;8(2):e1000316. doi: 10.1371/journal.pbio.1000316.
4
Absolute humidity modulates influenza survival, transmission, and seasonality.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. doi: 10.1073/pnas.0806852106. Epub 2009 Feb 9.
5
High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus.
J Virol. 2008 Jun;82(11):5650-2. doi: 10.1128/JVI.00325-08. Epub 2008 Mar 26.
6
Influenza virus transmission is dependent on relative humidity and temperature.
PLoS Pathog. 2007 Oct 19;3(10):1470-6. doi: 10.1371/journal.ppat.0030151.
7
The evolution of epidemic influenza.
Nat Rev Genet. 2007 Mar;8(3):196-205. doi: 10.1038/nrg2053. Epub 2007 Jan 30.
8
Influenza pandemics of the 20th century.
Emerg Infect Dis. 2006 Jan;12(1):9-14. doi: 10.3201/eid1201.051254.
9
Excess mortality from epidemic influenza, 1957-1966.
Am J Epidemiol. 1974 Jul;100(1):40-8. doi: 10.1093/oxfordjournals.aje.a112007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验