Suppr超能文献

薄膜电极的电化学特性分析,旨在开发 DNA 晶体管。

Electrochemical characterization of thin film electrodes toward developing a DNA transistor.

机构信息

IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States.

出版信息

Langmuir. 2010 Dec 21;26(24):19191-8. doi: 10.1021/la102671g. Epub 2010 Nov 22.

Abstract

The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage window from -2 V to +2 V. Furthermore, we demonstrated that, by coating the custom-oxidized TiN samples with HDPA and increasing the concentration of PEG-300 or glycerol in aqueous 1 mM KCl solutions, water decomposition was suppressed within the same voltage window. Water dissociation was not detected when combining custom-oxidized HDPA-coated TiN electrodes with an aqueous 1 mM KCl-glycerol solution at a glycerol concentration of at least 90%. These results are applicable to any system that requires nanoelectrodes placed in aqueous solution at voltages that can activate electrochemical processes.

摘要

DNA 晶体管是一种设计用于控制单链 DNA 通过固态纳米孔的易位的设备。该设备的功能通过暴露在含有 DNA 的电解质溶液中的三个电极和在电极之间施加动态静电势阱来实现,以暂时捕获 DNA 分子。优化设备的表面化学和电化学行为是开发功能设备的必要(但并非充分)步骤。特别是,需要消除的影响是(i)通过电极表面的腐蚀或还原而导致电化学诱导的表面变化,以及(ii)通过水分解在孔内形成氢气或氧气气泡。尽管我们的动机是解决 DNA 晶体管技术中遇到的问题,但在本文中,我们报告了通用表面化学结果。我们研究了各种电极-电解质-溶剂系统,以评估它们抑制水分解和保持表面完整性的能力。我们采用循环伏安法和长期安培法作为电化学测试方案,X 射线光电子能谱、原子力显微镜、扫描和透射电子显微镜作为分析工具。表征的电极材料包括 Ru、Pt、非化学计量 TiN 以及带有定制开发的氧化钛层的非化学计量 TiN 的薄膜,以及定制氧化的涂有十六烷基膦酸(HDPA)单层的 TiN。我们使用蒸馏水以及聚乙二醇(PEG-300)和甘油的水溶液作为溶剂。所有溶液均使用 1 mM KCl 作为电解质。我们的结果表明,HDPA 涂覆的定制开发的氧化钛层有效地使下面的 TiN 层钝化,在 -2 V 至 +2 V 的电压窗口内消除了任何通过腐蚀或还原引起的表面变化。此外,我们证明,通过在 HDPA 涂覆的定制氧化 TiN 样品上涂覆 HDPA 并增加水溶液中 1 mM KCl 中的 PEG-300 或甘油的浓度,可以在相同的电压窗口内抑制水分解。当将定制氧化的 HDPA 涂覆的 TiN 电极与含有至少 90%甘油的水溶液 1 mM KCl-甘油溶液结合使用时,在水中没有检测到水离解。这些结果适用于任何需要在可以激活电化学过程的电压下放置在水溶液中的纳米电极的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验