Suppr超能文献

固态纳米孔中薄膜电极的电化学保护。

Electrochemical protection of thin film electrodes in solid state nanopores.

机构信息

IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA.

出版信息

Nanotechnology. 2011 Jul 8;22(27):275304. doi: 10.1088/0957-4484/22/27/275304. Epub 2011 May 20.

Abstract

Solid state nanopores are a core element of next-generation single molecule tools in the field of nano-biotechnology. Thin film electrodes integrated into a pore can interact with charges and fields within the pore. In order to keep the nanopore open and thus functional electrochemically induced surface alteration of electrode surfaces and bubble formation inside the pore have to be eliminated. This paper provides electrochemical analyses of nanopores drilled into TiN membranes which in turn were employed as thin film electrodes. We studied physical pore integrity and the occurrence of water decomposition yielding bubble formation inside pores by applying voltages between -4.5 and +4.5 V to membranes in various protection stages continuously for up to 24 h. During potential application pores were exposed to selected electrolyte-solvent systems. We have investigated and successfully eliminated electrochemical pore oxidation and reduction as well as water decomposition inside nanopores of various diameters ranging from 3.5 to 25 nm in 50 nm thick TiN membranes by passivating the nanopores with a plasma-oxidized layer and using a 90% solution of glycerol in water as KCl solvent. Nanopore ionic conductances were measured before and after voltage application in order to test for changes in pore diameter due to electrochemical oxidation or reduction. TEM imaging was used to confirm these observations. While non-passivated pores were electrochemically oxidized, neither electrochemical oxidation nor reduction was observed for passivated pores. Bubble formation through water decomposition could be detected in non-passivated pores in KCl/water solutions but was not observed in 90% glycerol solutions. The use of a protective self-assembled monolayer of hexadecylphosphonic acid (HDPA) was also investigated.

摘要

固态纳米孔是纳米生物技术领域下一代单分子工具的核心元件。集成到孔中的薄膜电极可以与孔内的电荷和场相互作用。为了保持纳米孔的开放状态,从而保持其电化学功能,必须消除电极表面的电致表面变化和孔内的气泡形成。本文提供了对 TiN 膜中纳米孔的电化学分析,TiN 膜反过来又被用作薄膜电极。我们通过在各种保护阶段将-4.5V 至+4.5V 的电压连续施加到膜上长达 24 小时,研究了物理孔完整性和水分解导致孔内气泡形成的情况。在施加电位期间,将孔暴露于选定的电解质-溶剂系统中。我们已经研究并成功消除了不同直径(3.5nm 至 25nm)的纳米孔中的电化学氧化还原和水分解,这些纳米孔位于 50nm 厚的 TiN 膜中,方法是用等离子体氧化层钝化纳米孔并使用 90%的甘油水溶液作为 KCl 溶剂。在施加电压之前和之后测量纳米孔的离子电导率,以测试由于电化学氧化或还原导致的孔径变化。TEM 成像用于证实这些观察结果。虽然未钝化的孔被电化学氧化,但钝化的孔未观察到电化学氧化或还原。在未钝化的孔中可以检测到 KCl/水溶液中的水分解产生的气泡,但在 90%甘油溶液中未观察到气泡。还研究了十六烷基磷酸(HDPA)的保护性自组装单层的使用。

相似文献

1
Electrochemical protection of thin film electrodes in solid state nanopores.固态纳米孔中薄膜电极的电化学保护。
Nanotechnology. 2011 Jul 8;22(27):275304. doi: 10.1088/0957-4484/22/27/275304. Epub 2011 May 20.
4
Simple Fabrication of Solid-State Nanopores on a Carbon Film.在碳膜上简单制备固态纳米孔
Micromachines (Basel). 2021 Sep 21;12(9):1135. doi: 10.3390/mi12091135.
10
Gate-Voltage-Controlled Threading DNA into Transistor Nanopores.栅极电压控制 DNA 穿过晶体管纳米孔。
J Phys Chem B. 2018 Jan 18;122(2):827-833. doi: 10.1021/acs.jpcb.7b06932. Epub 2017 Oct 5.

引用本文的文献

本文引用的文献

2
DNA translocation through graphene nanopores.DNA 通过石墨烯纳米孔的转位。
Nano Lett. 2010 Aug 11;10(8):2915-21. doi: 10.1021/nl101046t.
3
DNA translocation through graphene nanopores.DNA 通过石墨烯纳米孔的转位。
Nano Lett. 2010 Aug 11;10(8):3163-7. doi: 10.1021/nl102069z.
7
The potential and challenges of nanopore sequencing.纳米孔测序的潜力与挑战。
Nat Biotechnol. 2008 Oct;26(10):1146-53. doi: 10.1038/nbt.1495.
8
Beyond the Gene Chip.超越基因芯片
Bell Labs Tech J. 2005;10(3):5-22. doi: 10.1002/bltj.20102.
9
Solid-state nanopores.固态纳米孔
Nat Nanotechnol. 2007 Apr;2(4):209-15. doi: 10.1038/nnano.2007.27. Epub 2007 Mar 4.
10
Sequence dependence of DNA translocation through a nanopore.DNA通过纳米孔转运的序列依赖性。
Phys Rev Lett. 2008 Feb 8;100(5):058101. doi: 10.1103/PhysRevLett.100.058101. Epub 2008 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验