Suppr超能文献

解析: - “The genome-scale metabolic network analysis of Zymomonas mobilis ZM4”:解析为“解析运动发酵单胞菌 ZM4 的全基因组代谢网络分析”。 - “explains physiological features and suggests ethanol and succinic acid production strategies.”:解析为“解释生理特征并提出乙醇和琥珀酸生产策略。” 整段译文为:解析运动发酵单胞菌 ZM4 的全基因组代谢网络分析解释生理特征并提出乙醇和琥珀酸生产策略。

The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies.

机构信息

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea.

出版信息

Microb Cell Fact. 2010 Nov 24;9:94. doi: 10.1186/1475-2859-9-94.

Abstract

BACKGROUND

Zymomonas mobilis ZM4 is a Gram-negative bacterium that can efficiently produce ethanol from various carbon substrates, including glucose, fructose, and sucrose, via the Entner-Doudoroff pathway. However, systems metabolic engineering is required to further enhance its metabolic performance for industrial application. As an important step towards this goal, the genome-scale metabolic model of Z. mobilis is required to systematically analyze in silico the metabolic characteristics of this bacterium under a wide range of genotypic and environmental conditions.

RESULTS

The genome-scale metabolic model of Z. mobilis ZM4, ZmoMBEL601, was reconstructed based on its annotated genes, literature, physiological and biochemical databases. The metabolic model comprises 579 metabolites and 601 metabolic reactions (571 biochemical conversion and 30 transport reactions), built upon extensive search of existing knowledge. Physiological features of Z. mobilis were then examined using constraints-based flux analysis in detail as follows. First, the physiological changes of Z. mobilis as it shifts from anaerobic to aerobic environments (i.e. aerobic shift) were investigated. Then the intensities of flux-sum, which is the cluster of either all ingoing or outgoing fluxes through a metabolite, and the maximum in silico yields of ethanol for Z. mobilis and Escherichia coli were compared and analyzed. Furthermore, the substrate utilization range of Z. mobilis was expanded to include pentose sugar metabolism by introducing metabolic pathways to allow Z. mobilis to utilize pentose sugars. Finally, double gene knock-out simulations were performed to design a strategy for efficiently producing succinic acid as another example of application of the genome-scale metabolic model of Z. mobilis.

CONCLUSION

The genome-scale metabolic model reconstructed in this study was able to successfully represent the metabolic characteristics of Z. mobilis under various conditions as validated by experiments and literature information. This reconstructed metabolic model will allow better understanding of Z. mobilis metabolism and consequently designing metabolic engineering strategies for various biotechnological applications.

摘要

背景

运动发酵单胞菌 ZM4 是一种革兰氏阴性细菌,可通过 Entner-Doudoroff 途径,从葡萄糖、果糖和蔗糖等各种碳源有效地生产乙醇。然而,为了实现工业应用,需要系统的代谢工程来进一步提高其代谢性能。作为实现这一目标的重要步骤,需要构建运动发酵单胞菌的基因组规模代谢模型,以便在广泛的基因型和环境条件下系统地分析该细菌的代谢特性。

结果

基于其注释基因、文献、生理和生化数据库,构建了运动发酵单胞菌 ZM4 的基因组规模代谢模型 ZmoMBEL601。该代谢模型包含 579 种代谢物和 601 种代谢反应(571 种生化转化和 30 种运输反应),这些反应是在广泛搜索现有知识的基础上构建的。然后,我们使用基于约束的通量分析详细研究了运动发酵单胞菌的生理特征,具体如下。首先,研究了运动发酵单胞菌从厌氧环境向需氧环境(即有氧转变)转变时的生理变化。然后,比较和分析了 Z. mobilis 和大肠杆菌的通量总和强度(即通过代谢物的所有传入或传出通量的簇)和最大的理论乙醇产率。此外,通过引入代谢途径使运动发酵单胞菌能够利用戊糖,从而扩大了其底物利用范围。最后,进行了双基因敲除模拟,以设计一种高效生产琥珀酸的策略,作为应用运动发酵单胞菌基因组规模代谢模型的另一个例子。

结论

通过实验和文献信息验证,本研究中重建的基因组规模代谢模型能够成功地代表不同条件下运动发酵单胞菌的代谢特征。该重建的代谢模型将有助于更好地理解运动发酵单胞菌的代谢,并为各种生物技术应用设计代谢工程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97d8/3004842/b5521294dd71/1475-2859-9-94-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验