Suppr超能文献

H 和 C 代谢通量分析阐明了运动发酵单胞菌 ED 途径的体内热力学。

H and C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis.

机构信息

Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.

Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Metab Eng. 2019 Jul;54:301-316. doi: 10.1016/j.ymben.2019.05.006. Epub 2019 May 10.

Abstract

Zymomonas mobilis is an industrially relevant bacterium notable for its ability to rapidly ferment simple sugars to ethanol using the Entner-Doudoroff (ED) glycolytic pathway, an alternative to the well-known Embden-Meyerhof-Parnas (EMP) pathway used by most organisms. Recent computational studies have predicted that the ED pathway is substantially more thermodynamically favorable than the EMP pathway, a potential factor explaining the high glycolytic rate in Z. mobilis. Here, to investigate the in vivo thermodynamics of the ED pathway and central carbon metabolism in Z. mobilis, we implemented a network-level approach that integrates quantitative metabolomics with H and C metabolic flux analysis to estimate reversibility and Gibbs free energy (ΔG) of metabolic reactions. This analysis revealed a strongly thermodynamically favorable ED pathway in Z. mobilis that is nearly twice as favorable as the EMP pathway in E. coli or S. cerevisiae. The in vivo step-by-step thermodynamic profile of the ED pathway was highly similar to previous in silico predictions, indicating that maximizing ΔG for each pathway step likely constitutes a cellular objective in Z. mobilis. Our analysis also revealed novel features of Z. mobilis metabolism, including phosphofructokinase-like enzyme activity, tricarboxylic acid cycle anaplerosis via PEP carboxylase, and a metabolic imbalance in the pentose phosphate pathway resulting in excretion of shikimate pathway intermediates. The integrated approach we present here for in vivo ΔG quantitation may be applied to the thermodynamic profiling of pathways and metabolic networks in other microorganisms and will contribute to the development of quantitative models of metabolism.

摘要

运动发酵单胞菌是一种具有工业应用价值的细菌,其特点是能够利用不同于大多数生物所采用的熟知的 EMP 途径(Embden-Meyerhof-Parnas pathway),即 ED 途径(Entner-Doudoroff pathway),快速将简单糖发酵为乙醇。最近的计算研究表明,ED 途径在热力学上比 EMP 途径更有利,这可能是运动发酵单胞菌具有高糖酵解速率的一个潜在因素。在这里,为了研究 ED 途径和运动发酵单胞菌中心碳代谢的体内热力学,我们采用了一种网络水平的方法,该方法将定量代谢组学与 H 和 C 代谢通量分析相结合,以估计代谢反应的可逆性和吉布斯自由能(ΔG)。该分析表明,运动发酵单胞菌中的 ED 途径在热力学上非常有利,几乎是大肠杆菌或酿酒酵母中 EMP 途径的两倍。ED 途径的体内逐步热力学谱与之前的计算机预测高度相似,表明为每个途径步骤最大化 ΔG 可能是运动发酵单胞菌中的一个细胞目标。我们的分析还揭示了运动发酵单胞菌代谢的一些新特征,包括磷酸果糖激酶样酶活性、通过 PEP 羧化酶进行三羧酸循环补料、以及戊糖磷酸途径的代谢失衡导致莽草酸途径中间产物的排泄。我们在这里提出的用于体内 ΔG 定量的综合方法可应用于其他微生物中途径和代谢网络的热力学分析,并将有助于代谢的定量模型的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验