Suppr超能文献

构建和表征可诱导乳糖的启动子系统,用于控制产气荚膜梭菌中的基因表达。

Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens.

机构信息

Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.

出版信息

Appl Environ Microbiol. 2011 Jan;77(2):471-8. doi: 10.1128/AEM.01536-10. Epub 2010 Nov 19.

Abstract

Clostridium perfringens is a Gram-positive anaerobic pathogen which causes many diseases in humans and animals. While some genetic tools exist for working with C. perfringens, a tightly regulated, inducible promoter system is currently lacking. Therefore, we constructed a plasmid-based promoter system that provided regulated expression when lactose was added. This plasmid (pKRAH1) is an Escherichia coli-C. perfringens shuttle vector containing the gene encoding a transcriptional regulator, BgaR, and a divergent promoter upstream of gene bgaL (bgaR-P(bgaL)). To measure transcription at the bgaL promoter in pKRAH1, the E. coli reporter gene gusA, encoding β-glucuronidase, was placed downstream of the P(bgaL) promoter to make plasmid pAH2. When transformed into three strains of C. perfringens, pAH2 exhibited lactose-inducible expression. C. perfringens strain 13, a commonly studied strain, has endogenous β-glucuronidase activity. We mutated gene bglR, encoding a putative β-glucuronidase, and observed an 89% decrease in endogenous activity with no lactose. This combination of a system for regulated gene expression and a mutant of strain 13 with low β-glucuronidase activity are useful tools for studying gene regulation and protein expression in an important pathogenic bacterium. We used this system to express the yfp-pilB gene, comprised of a yellow fluorescent protein (YFP)-encoding gene fused to an assembly ATPase gene involved in type IV pilus-dependent gliding motility in C. perfringens. Expression in the wild-type strain showed that YFP-PilB localized mostly to the poles of cells, but in a pilC mutant it localized throughout the cell, demonstrating that the membrane protein PilC is required for polar localization of PilB.

摘要

产气荚膜梭菌是一种革兰氏阳性厌氧菌病原体,可引起人类和动物的许多疾病。虽然有一些用于处理产气荚膜梭菌的遗传工具,但目前缺乏一种严格调控、诱导型启动子系统。因此,我们构建了一个基于质粒的启动子系统,当添加乳糖时,该系统可提供调控表达。该质粒 (pKRAH1) 是一种大肠杆菌-产气荚膜梭菌穿梭载体,包含编码转录调节剂 BgaR 的基因和基因 bgaL 上游的发散启动子 (bgaR-P(bgaL))。为了测量 pKRAH1 中 bgaL 启动子的转录,将编码β-葡萄糖醛酸酶的大肠杆菌报告基因 gusA 置于 P(bgaL) 启动子的下游,得到质粒 pAH2。当转化为三种产气荚膜梭菌菌株时,pAH2 表现出乳糖诱导表达。13 号菌株是一种常用的研究菌株,具有内源性β-葡萄糖醛酸酶活性。我们突变了编码假定β-葡萄糖醛酸酶的基因 bglR,并观察到在没有乳糖的情况下内源性活性降低了 89%。这种调控基因表达的系统与 13 号菌株的突变体相结合,该突变体β-葡萄糖醛酸酶活性较低,是研究重要致病性细菌中基因调控和蛋白表达的有用工具。我们使用该系统表达了 yfp-pilB 基因,该基因由一个黄色荧光蛋白 (YFP) 编码基因与一个参与产气荚膜梭菌 IV 型菌毛依赖滑行运动的组装 ATP 酶基因融合而成。在野生型菌株中的表达表明,YFP-PilB 主要定位于细胞的两极,但在 pilC 突变体中,它定位于整个细胞,表明膜蛋白 PilC 是 PilB 极性定位所必需的。

相似文献

1
Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens.
Appl Environ Microbiol. 2011 Jan;77(2):471-8. doi: 10.1128/AEM.01536-10. Epub 2010 Nov 19.
2
Development and characterization of a xylose-inducible gene expression system for Clostridium perfringens.
Appl Environ Microbiol. 2011 Dec;77(23):8439-41. doi: 10.1128/AEM.05668-11. Epub 2011 Sep 30.
6
Expression from the Clostridium perfringens cpe promoter in C. perfringens and Bacillus subtilis.
Infect Immun. 1994 Dec;62(12):5550-8. doi: 10.1128/iai.62.12.5550-5558.1994.
9
Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli.
Appl Microbiol Biotechnol. 2012 Oct;96(1):171-81. doi: 10.1007/s00253-012-4087-z. Epub 2012 Apr 27.

引用本文的文献

1
Interaction between the breast tumor microenvironment and gut microbiome.
Gut Microbes. 2025 Dec;17(1):2514136. doi: 10.1080/19490976.2025.2514136. Epub 2025 Jun 8.
3
Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations.
Front Bioeng Biotechnol. 2023 Jul 17;11:1202388. doi: 10.3389/fbioe.2023.1202388. eCollection 2023.
4
Chromosomal engineering of inducible isopropanol- butanol-ethanol production in .
Front Bioeng Biotechnol. 2023 Jun 16;11:1218099. doi: 10.3389/fbioe.2023.1218099. eCollection 2023.
5
Heterologous 1,3-Propanediol Production Using Different Recombinant DSM 6423 Strains.
Microorganisms. 2023 Mar 18;11(3):784. doi: 10.3390/microorganisms11030784.
6
Single and multiplexed gene repression in solventogenic via Cas12a-based CRISPR interference.
Synth Syst Biotechnol. 2022 Dec 24;8(1):148-156. doi: 10.1016/j.synbio.2022.12.005. eCollection 2023 Mar.
8
Production of propionate using metabolically engineered strains of Clostridium saccharoperbutylacetonicum.
Appl Microbiol Biotechnol. 2022 Nov;106(22):7547-7562. doi: 10.1007/s00253-022-12210-8. Epub 2022 Oct 25.
10
Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
FEMS Microbiol Rev. 2021 Mar 16;45(2). doi: 10.1093/femsre/fuab008.

本文引用的文献

3
Generation of single-copy transposon insertions in Clostridium perfringens by electroporation of phage mu DNA transposition complexes.
Appl Environ Microbiol. 2009 May;75(9):2638-42. doi: 10.1128/AEM.02214-08. Epub 2009 Mar 6.
5
Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria.
Appl Environ Microbiol. 2009 Apr;75(7):2099-110. doi: 10.1128/AEM.02066-08. Epub 2009 Jan 30.
7
The ClosTron: a universal gene knock-out system for the genus Clostridium.
J Microbiol Methods. 2007 Sep;70(3):452-64. doi: 10.1016/j.mimet.2007.05.021. Epub 2007 Jun 18.
8
Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia.
Mol Microbiol. 2006 Nov;62(3):680-94. doi: 10.1111/j.1365-2958.2006.05414.x. Epub 2006 Sep 25.
10
Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens.
Genome Res. 2006 Aug;16(8):1031-40. doi: 10.1101/gr.5238106. Epub 2006 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验