Suppr超能文献

产甲烷古菌中的基因组拷贝数和基因转换。

Genome copy numbers and gene conversion in methanogenic archaea.

机构信息

Goethe-University, Biocentre, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.

出版信息

J Bacteriol. 2011 Feb;193(3):734-43. doi: 10.1128/JB.01016-10. Epub 2010 Nov 19.

Abstract

Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera-Methanosarcina acetivorans and Methanococcus maripaludis-were investigated. M. acetivorans was found to be polyploid during fast growth (t(D) = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called "Muller's ratchet"). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection.

摘要

先前的研究表明,产甲烷古菌中有一个种,即 Methanocaldococcus jannaschii,是多倍体,而另一个种 Methanothermobacter thermoautotrophicus 则是二倍体。为了进一步研究产甲烷古菌的倍性分布,我们还研究了另外两个属的种——Methanosarcina acetivorans 和 Methanococcus maripaludis。研究发现,M. acetivorans 在快速生长时(倍增时间 t(D) = 6 h;基因组拷贝数为 17 个)是多倍体,在缓慢生长时(倍增时间 = 49 h;基因组拷贝数为 3 个)是寡倍体。M. maripaludis 的倍性水平是所有古菌中最高的,在指数生长期有多达 55 个基因组拷贝,在静止期约有 30 个。对具有定量倍性水平的古菌物种进行汇编,揭示了真细菌和古细菌之间的明显二分法:在六个属的七个真细菌种中,没有一个是单倍体(单倍体),而相反,四个属的六个古细菌种都是单倍体,这表明这两个王国之间存在显著的遗传差异。在无性繁殖物种中,多倍体的出现应该会导致失活突变的积累,直到每个细胞中的完整染色体数量降至零(称为“Muller 的棘轮”)。一种使基因组拷贝数均等化的机制,如基因转换,将抵消这种现象。利用先前构建的多倍体 M. maripaludis 的杂合突变株,我们可以证明,在没有选择的情况下,M. maripaludis 中的基因组非常快速地均等化,可能是通过基因转换机制。此外,还表明这种现象的速度与选择的强度成反比。

相似文献

1
Genome copy numbers and gene conversion in methanogenic archaea.
J Bacteriol. 2011 Feb;193(3):734-43. doi: 10.1128/JB.01016-10. Epub 2010 Nov 19.
2
Ploidy and gene conversion in Archaea.
Biochem Soc Trans. 2011 Jan;39(1):150-4. doi: 10.1042/BST0390150.
3
Studying gene regulation in methanogenic archaea.
Methods Enzymol. 2011;494:91-110. doi: 10.1016/B978-0-12-385112-3.00005-6.
7
A Membrane-Bound Cytochrome Enables To Conserve Energy from Extracellular Electron Transfer.
mBio. 2019 Aug 20;10(4):e00789-19. doi: 10.1128/mBio.00789-19.
8
Transcriptional regulation of methanogenic metabolism in archaea.
Curr Opin Microbiol. 2021 Apr;60:8-15. doi: 10.1016/j.mib.2021.01.005. Epub 2021 Feb 6.
9
A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis.
Mol Microbiol. 2003 Jan;47(1):235-46. doi: 10.1046/j.1365-2958.2003.03293.x.
10
Regulated polyploidy in halophilic archaea.
PLoS One. 2006 Dec 20;1(1):e92. doi: 10.1371/journal.pone.0000092.

引用本文的文献

1
: a versatile model for studying archaeal biology.
J Bacteriol. 2025 Jun 24;207(6):e0006225. doi: 10.1128/jb.00062-25. Epub 2025 May 14.
5
The Archaeal Cell Cycle.
Annu Rev Cell Dev Biol. 2024 Oct;40(1):1-23. doi: 10.1146/annurev-cellbio-111822-120242. Epub 2024 Sep 21.
6
CRISPR/Cas12a toolbox for genome editing in .
Front Microbiol. 2023 Dec 12;14:1235616. doi: 10.3389/fmicb.2023.1235616. eCollection 2023.
8
Segregational drift hinders the evolution of antibiotic resistance on polyploid replicons.
PLoS Genet. 2023 Aug 3;19(8):e1010829. doi: 10.1371/journal.pgen.1010829. eCollection 2023 Aug.
9
Ploidy in : Very Dynamic and Rapidly Changing Copy Numbers of Both Chromosomes.
Genes (Basel). 2023 Jul 13;14(7):1437. doi: 10.3390/genes14071437.

本文引用的文献

2
A pattern analysis of gene conversion literature.
Comp Funct Genomics. 2009;2009:761512. doi: 10.1155/2009/761512. Epub 2010 Jan 31.
3
In vivo requirement of selenophosphate for selenoprotein synthesis in archaea.
Mol Microbiol. 2010 Jan;75(1):149-60. doi: 10.1111/j.1365-2958.2009.06970.x. Epub 2009 Nov 17.
4
Gene expression analysis at the intersection of ploidy and hybridity in maize.
Theor Appl Genet. 2010 Jan;120(2):341-53. doi: 10.1007/s00122-009-1113-3.
5
6
Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans.
Cell. 2009 Mar 20;136(6):1044-55. doi: 10.1016/j.cell.2009.01.018.
8
Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants.
J Microbiol Methods. 2008 Oct;75(2):201-4. doi: 10.1016/j.mimet.2008.05.029. Epub 2008 Jun 8.
9
Cell cycle characteristics of crenarchaeota: unity among diversity.
J Bacteriol. 2008 Aug;190(15):5362-7. doi: 10.1128/JB.00330-08. Epub 2008 May 23.
10
Genomic clues to the evolutionary success of polyploid plants.
Curr Biol. 2008 May 20;18(10):R435-R444. doi: 10.1016/j.cub.2008.03.043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验