Suppr超能文献

血红素的新作用:促进细菌铁蛋白中铁生物矿的释放。

A new role for heme, facilitating release of iron from the bacterioferritin iron biomineral.

机构信息

Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.

出版信息

J Biol Chem. 2011 Feb 4;286(5):3473-83. doi: 10.1074/jbc.M110.175034. Epub 2010 Nov 23.

Abstract

Bacterioferritin (BFR) from Escherichia coli is a member of the ferritin family of iron storage proteins and has the capacity to store very large amounts of iron as an Fe(3+) mineral inside its central cavity. The ability of organisms to tap into their cellular stores in times of iron deprivation requires that iron must be released from ferritin mineral stores. Currently, relatively little is known about the mechanisms by which this occurs, particularly in prokaryotic ferritins. Here we show that the bis-Met-coordinated heme groups of E. coli BFR, which are not found in other members of the ferritin family, play an important role in iron release from the BFR iron biomineral: kinetic iron release experiments revealed that the transfer of electrons into the internal cavity is the rate-limiting step of the release reaction and that the rate and extent of iron release were significantly increased in the presence of heme. Despite previous reports that a high affinity Fe(2+) chelator is required for iron release, we show that a large proportion of BFR core iron is released in the absence of such a chelator and further that chelators are not passive participants in iron release reactions. Finally, we show that the catalytic ferroxidase center, which is central to the mechanism of mineralization, is not involved in iron release; thus, core mineralization and release processes utilize distinct pathways.

摘要

大肠杆菌中的细菌铁蛋白(BFR)是铁蛋白家族的一员,具有将大量铁作为 Fe(3+)矿物储存在其中心腔中的能力。生物在缺铁时能够利用其细胞储存铁的能力,这就要求铁必须从铁蛋白矿物储存中释放出来。目前,人们对这种情况发生的机制知之甚少,特别是在原核铁蛋白中。在这里,我们表明大肠杆菌 BFR 中双-Met 配位的血红素基团在铁蛋白家族的其他成员中不存在,在从 BFR 铁生物矿中释放铁方面发挥着重要作用:动力学铁释放实验表明,电子进入内部腔是释放反应的限速步骤,血红素的存在显著增加了铁的释放速率和程度。尽管之前有报道称需要高亲和力的 Fe(2+)螯合剂才能释放铁,但我们表明在没有这种螯合剂的情况下,BFR 核心铁的很大一部分被释放,并且螯合剂不是铁释放反应的被动参与者。最后,我们表明,对矿化机制至关重要的催化亚铁氧化酶中心不参与铁释放;因此,核心矿化和释放过程利用不同的途径。

相似文献

1
A new role for heme, facilitating release of iron from the bacterioferritin iron biomineral.
J Biol Chem. 2011 Feb 4;286(5):3473-83. doi: 10.1074/jbc.M110.175034. Epub 2010 Nov 23.
2
Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization.
Acc Chem Res. 2017 Feb 21;50(2):331-340. doi: 10.1021/acs.accounts.6b00514. Epub 2017 Feb 8.
5
Structural basis for iron mineralization by bacterioferritin.
J Am Chem Soc. 2009 May 20;131(19):6808-13. doi: 10.1021/ja8093444.
8
The Ferroxidase Centre of Escherichia coli Bacterioferritin Plays a Key Role in the Reductive Mobilisation of the Mineral Iron Core.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202401379. doi: 10.1002/anie.202401379. Epub 2024 Mar 12.
9
Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.
Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14763-7. doi: 10.1002/anie.201507486. Epub 2015 Oct 16.
10
Impact of Phosphate on Iron Mineralization and Mobilization in Nonheme Bacterioferritin B from .
Inorg Chem. 2020 Jan 6;59(1):629-641. doi: 10.1021/acs.inorgchem.9b02894. Epub 2019 Dec 10.

引用本文的文献

1
The Iron-Sulfur Cluster of Bacterioferritin-Associated Ferredoxin (Bfd): a "Biological Fuse" that Prevents Oxidative Damage to Cells?
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202511340. doi: 10.1002/anie.202511340. Epub 2025 Jun 25.
2
Unveiling Structural Heterogeneity and Evolutionary Adaptations of Heteromultimeric Bacterioferritin Nanocages.
Adv Sci (Weinh). 2025 May;12(20):e2409957. doi: 10.1002/advs.202409957. Epub 2025 Apr 1.
4
Electron Transfer from Haem to the Di-Iron Ferroxidase Centre in Bacterioferritin.
Angew Chem Weinheim Bergstr Ger. 2021 Apr 6;133(15):8457-8460. doi: 10.1002/ange.202015965. Epub 2021 Mar 1.
5
A natural biogenic nanozyme for scavenging superoxide radicals.
Nat Commun. 2024 Jan 3;15(1):233. doi: 10.1038/s41467-023-44463-w.
6
Bacterioferritin nanocage structures uncover the biomineralization process in ferritins.
PNAS Nexus. 2023 Jul 20;2(7):pgad235. doi: 10.1093/pnasnexus/pgad235. eCollection 2023 Jul.
7
Structural and functional relationship of mammalian and nematode ferritins.
BioTechnologia (Pozn). 2021 Dec 22;102(4):457-471. doi: 10.5114/bta.2021.111110. eCollection 2021.
8
9
Electron Transfer from Haem to the Di-Iron Ferroxidase Centre in Bacterioferritin.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8376-8379. doi: 10.1002/anie.202015965. Epub 2021 Mar 1.
10
Bacterial iron detoxification at the molecular level.
J Biol Chem. 2020 Dec 18;295(51):17602-17623. doi: 10.1074/jbc.REV120.007746.

本文引用的文献

2
Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor.
J Biol Chem. 2010 Jul 23;285(30):23331-41. doi: 10.1074/jbc.M110.127449. Epub 2010 May 11.
3
Iron core mineralisation in prokaryotic ferritins.
Biochim Biophys Acta. 2010 Aug;1800(8):732-44. doi: 10.1016/j.bbagen.2010.04.002. Epub 2010 Apr 11.
4
A novel EP-involved pathway for iron release from soya bean seed ferritin.
Biochem J. 2010 Mar 29;427(2):313-21. doi: 10.1042/BJ20100015.
7
Structural basis for iron mineralization by bacterioferritin.
J Am Chem Soc. 2009 May 20;131(19):6808-13. doi: 10.1021/ja8093444.
8
Ferritin is used for iron storage in bloom-forming marine pennate diatoms.
Nature. 2009 Jan 22;457(7228):467-70. doi: 10.1038/nature07539. Epub 2008 Nov 26.
10
Peptides selected for the protein nanocage pores change the rate of iron recovery from the ferritin mineral.
J Biol Chem. 2007 Nov 2;282(44):31821-5. doi: 10.1074/jbc.C700153200. Epub 2007 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验