Suppr超能文献

基于 P300 的脑机接口的统计空间滤波:对健康人和脑瘫及肌萎缩性侧索硬化症患者的测试。

Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis.

机构信息

Institute for Systems and Robotics (ISR), University of Coimbra, 3030-290 Coimbra, Portugal.

出版信息

J Neurosci Methods. 2011 Feb 15;195(2):270-81. doi: 10.1016/j.jneumeth.2010.11.016. Epub 2010 Dec 1.

Abstract

The effective use of brain-computer interfaces (BCIs) in real-world environments depends on a satisfactory throughput. In a P300-based BCI, this can be attained by reducing the number of trials needed to detect the P300 signal. However, this task is hampered by the very low signal-to-noise-ratio (SNR) of P300 event related potentials. This paper proposes an efficient methodology that achieves high classification accuracy and high transfer rates for both disabled and able-bodied subjects in a standard P300-based speller system. The system was tested by three subjects with cerebral palsy (CP), two subjects with amyotrophic lateral sclerosis (ALS), and nineteen able-bodied subjects. The paper proposes the application of three statistical spatial filters. The first is a beamformer that maximizes the ratio of signal power and noise power (Max-SNR). The second is a beamformer based on the Fisher criterion (FC). The third approach cascades the FC beamformer with the Max-SNR beamformer satisfying simultaneously sub-optimally both criteria (C-FMS). The calibration process of the BCI system takes about 5 min to collect data and a couple of minutes to obtain spatial filters and classification models. Online results showed that subjects with disabilities have achieved, on average, an accuracy and transfer rate only slightly lower than able-bodied subjects. Taking 23 of the 24 participants, the averaged results achieved a transfer rate of 4.33 symbols per minute with a 91.80% accuracy, corresponding to a bandwidth of 19.18 bits per minute. This study shows the feasibility of the proposed methodology and that effective communication rates are achievable.

摘要

脑机接口(BCI)在实际环境中的有效使用取决于令人满意的吞吐量。在基于 P300 的 BCI 中,可以通过减少检测 P300 信号所需的试验次数来实现。然而,这一任务受到 P300 事件相关电位(ERP)非常低的信噪比(SNR)的阻碍。本文提出了一种高效的方法,该方法在标准 P300 拼写器系统中,对残疾人和健全人都能实现高分类准确率和高传输率。该系统由 3 名脑瘫(CP)患者、2 名肌萎缩性侧索硬化症(ALS)患者和 19 名健康受试者进行了测试。本文提出了三种统计空间滤波器的应用。第一种是最大化信号功率与噪声功率比(Max-SNR)的波束形成器。第二种是基于 Fisher 准则(FC)的波束形成器。第三种方法是将 FC 波束形成器与同时满足两个准则的 Max-SNR 波束形成器级联(C-FMS)。BCI 系统的校准过程大约需要 5 分钟来收集数据,以及几分钟来获取空间滤波器和分类模型。在线结果表明,残疾受试者的准确率和传输率平均仅略低于健康受试者。在 24 名参与者中的 23 名中,平均结果达到了 4.33 个符号/分钟的传输率,准确率为 91.80%,对应的带宽为 19.18 位/分钟。这项研究表明了所提出的方法的可行性,以及实现有效通信率的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验