Department of Automatic Engineering, University of Oriente, Santiago de Cuba 90500, Cuba.
Electronics, Communications and Computing Services Company for the Nickel Industry, Holguín 80100, Cuba.
Sensors (Basel). 2023 Jan 8;23(2):703. doi: 10.3390/s23020703.
The development of Brain-Computer Interfaces based on Motor Imagery (MI) tasks is a relevant research topic worldwide. The design of accurate and reliable BCI systems remains a challenge, mainly in terms of increasing performance and usability. Classifiers based on Bayesian Neural Networks are proposed in this work by using the variational inference, aiming to analyze the uncertainty during the MI prediction. An adaptive threshold scheme is proposed here for MI classification with a reject option, and its performance on both datasets 2a and 2b from BCI Competition IV is compared with other approaches based on thresholds. The results using subject-specific and non-subject-specific training strategies are encouraging. From the uncertainty analysis, considerations for reducing computational cost are proposed for future work.
基于运动想象(MI)任务的脑机接口的发展是一个全球性的相关研究课题。设计准确、可靠的 BCI 系统仍然是一个挑战,主要是在提高性能和可用性方面。本工作提出了基于贝叶斯神经网络的分类器,通过使用变分推理来分析 MI 预测过程中的不确定性。本文提出了一种带有拒绝选项的 MI 分类的自适应阈值方案,并将其在 BCI 竞赛 IV 的数据集 2a 和 2b 上的性能与基于阈值的其他方法进行了比较。使用特定于个体和非特定于个体的训练策略的结果是令人鼓舞的。从不确定性分析中,提出了考虑降低计算成本的建议,以供未来的工作参考。