Suppr超能文献

用于病变分割的磁共振造影合成

MR CONTRAST SYNTHESIS FOR LESION SEGMENTATION.

作者信息

Roy Snehashis, Carass Aaron, Shiee Navid, Pham Dzung L, Prince Jerry L

机构信息

Image Analysis and Communications Laboratory, Electrical and Computer Engineering, The Johns Hopkins University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010:932-935. doi: 10.1109/ISBI.2010.5490140.

Abstract

The magnetic resonance contrast of a neuroimaging data set has strong impact on the utility of the data in image analysis tasks, such as registration and segmentation. Lengthy acquisition times often prevent routine acquisition of multiple MR contrast images, and opportunities for detailed analysis using these data would seem to be irrevocably lost. This paper describes an example based approach which uses patch matching from a multiple contrast atlas with the intended goal of generating an alternate MR contrast image, thus effectively simulating alternative pulse sequences from one another. In this paper, we deal specifically with Fluid Attenuated Inversion Recovery (FLAIR) sequence generation from T1 and T2 pulse sequences. The applicability of this synthetic FLAIR for estimating white matter lesions segmentation is demonstrated.

摘要

神经成像数据集的磁共振对比度对图像分析任务(如配准和分割)中数据的效用有很大影响。较长的采集时间常常阻碍多个磁共振对比度图像的常规采集,使用这些数据进行详细分析的机会似乎将不可挽回地丧失。本文描述了一种基于示例的方法,该方法使用来自多对比度图谱的补丁匹配,目的是生成替代的磁共振对比度图像,从而有效地相互模拟替代脉冲序列。在本文中,我们专门处理从T1和T2脉冲序列生成液体衰减反转恢复(FLAIR)序列。证明了这种合成FLAIR在估计白质病变分割方面的适用性。

相似文献

1
MR CONTRAST SYNTHESIS FOR LESION SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010:932-935. doi: 10.1109/ISBI.2010.5490140.
2
Synthesizing MR Contrast and Resolution through a Patch Matching Technique.
Proc SPIE Int Soc Opt Eng. 2010;7623:76230j. doi: 10.1117/12.844575.
6
Image quality at synthetic brain magnetic resonance imaging in children.
Pediatr Radiol. 2017 Nov;47(12):1638-1647. doi: 10.1007/s00247-017-3913-y. Epub 2017 Jun 22.
7
[Evaluation of Improvement of Tissue Contrast and Reduction of Imaging Time by Shortening TR in Brain T FLAIR Using MTC Pulse].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2020;76(12):1256-1265. doi: 10.6009/jjrt.2020_JSRT_76.12.1256.
10
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.

引用本文的文献

1
One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation.
IEEE Trans Med Imaging. 2023 Sep;42(9):2577-2591. doi: 10.1109/TMI.2023.3261707. Epub 2023 Aug 31.
2
Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning.
J Med Imaging (Bellingham). 2020 Nov;7(6):064004. doi: 10.1117/1.JMI.7.6.064004. Epub 2020 Dec 23.
3
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.
Sci Rep. 2020 May 19;10(1):8242. doi: 10.1038/s41598-020-64803-w.
5
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
6
Learning Implicit Brain MRI Manifolds with Deep Learning.
Proc SPIE Int Soc Opt Eng. 2018 Mar;10574. doi: 10.1117/12.2293515.
7
Brain lesion segmentation through image synthesis and outlier detection.
Neuroimage Clin. 2017 Sep 8;16:643-658. doi: 10.1016/j.nicl.2017.09.003. eCollection 2017.
8
Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.
Med Image Anal. 2018 Jul;47:31-44. doi: 10.1016/j.media.2018.03.011. Epub 2018 Mar 30.
9
Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis.
Med Image Anal. 2017 Oct;41:18-31. doi: 10.1016/j.media.2017.05.004. Epub 2017 May 13.
10
Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.
Simul Synth Med Imaging. 2016 Oct;9968:146-156. doi: 10.1007/978-3-319-46630-9_15. Epub 2016 Sep 23.

本文引用的文献

1
A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions.
Neuroimage. 2010 Jan 15;49(2):1524-35. doi: 10.1016/j.neuroimage.2009.09.005. Epub 2009 Sep 17.
2
Topology-preserving tissue classification of magnetic resonance brain images.
IEEE Trans Med Imaging. 2007 Apr;26(4):487-96. doi: 10.1109/TMI.2007.893283.
3
An information fidelity criterion for image quality assessment using natural scene statistics.
IEEE Trans Image Process. 2005 Dec;14(12):2117-28. doi: 10.1109/tip.2005.859389.
4
Sequence-independent segmentation of magnetic resonance images.
Neuroimage. 2004;23 Suppl 1:S69-84. doi: 10.1016/j.neuroimage.2004.07.016.
5
Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis.
IEEE Trans Med Imaging. 2002 Oct;21(10):1280-91. doi: 10.1109/TMI.2002.806283.
6
Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage. 1999 Feb;9(2):179-94. doi: 10.1006/nimg.1998.0395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验