Wei Wen, Poirion Emilie, Bodini Benedetta, Durrleman Stanley, Colliot Olivier, Stankoff Bruno, Ayache Nicholas
Université Côte d'Azur, Inria, Epione Project Team, Sophia Antipolis, France.
Sorbonne Université, Inserm, CNRS, Institut du cerveau et la moelle (ICM), AP-HP-Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, Paris, France.
J Med Imaging (Bellingham). 2019 Jan;6(1):014005. doi: 10.1117/1.JMI.6.1.014005. Epub 2019 Feb 19.
Multiple sclerosis (MS) is a white matter (WM) disease characterized by the formation of WM lesions, which can be visualized by magnetic resonance imaging (MRI). The fluid-attenuated inversion recovery (FLAIR) MRI pulse sequence is used clinically and in research for the detection of WM lesions. However, in clinical settings, some MRI pulse sequences could be missed because of various constraints. The use of the three-dimensional fully convolutional neural networks is proposed to predict FLAIR pulse sequences from other MRI pulse sequences. In addition, the contribution of each input pulse sequence is evaluated with a pulse sequence-specific saliency map. This approach is tested on a real MS image dataset and evaluated by comparing this approach with other methods and by assessing the lesion contrast in the synthetic FLAIR pulse sequence. Both the qualitative and quantitative results show that this method is competitive for FLAIR synthesis.
多发性硬化症(MS)是一种白质(WM)疾病,其特征是形成WM病变,可通过磁共振成像(MRI)可视化。液体衰减反转恢复(FLAIR)MRI脉冲序列在临床和研究中用于检测WM病变。然而,在临床环境中,由于各种限制,一些MRI脉冲序列可能会被遗漏。有人提出使用三维全卷积神经网络从其他MRI脉冲序列预测FLAIR脉冲序列。此外,通过特定于脉冲序列的显著性图评估每个输入脉冲序列的贡献。该方法在真实的MS图像数据集上进行了测试,并通过将该方法与其他方法进行比较以及评估合成FLAIR脉冲序列中的病变对比度来进行评估。定性和定量结果均表明,该方法在FLAIR合成方面具有竞争力。