Suppr超能文献

利用三维全卷积网络从多序列磁共振成像进行液体衰减反转恢复磁共振成像合成以用于多发性硬化症研究

Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis.

作者信息

Wei Wen, Poirion Emilie, Bodini Benedetta, Durrleman Stanley, Colliot Olivier, Stankoff Bruno, Ayache Nicholas

机构信息

Université Côte d'Azur, Inria, Epione Project Team, Sophia Antipolis, France.

Sorbonne Université, Inserm, CNRS, Institut du cerveau et la moelle (ICM), AP-HP-Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, Paris, France.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):014005. doi: 10.1117/1.JMI.6.1.014005. Epub 2019 Feb 19.

Abstract

Multiple sclerosis (MS) is a white matter (WM) disease characterized by the formation of WM lesions, which can be visualized by magnetic resonance imaging (MRI). The fluid-attenuated inversion recovery (FLAIR) MRI pulse sequence is used clinically and in research for the detection of WM lesions. However, in clinical settings, some MRI pulse sequences could be missed because of various constraints. The use of the three-dimensional fully convolutional neural networks is proposed to predict FLAIR pulse sequences from other MRI pulse sequences. In addition, the contribution of each input pulse sequence is evaluated with a pulse sequence-specific saliency map. This approach is tested on a real MS image dataset and evaluated by comparing this approach with other methods and by assessing the lesion contrast in the synthetic FLAIR pulse sequence. Both the qualitative and quantitative results show that this method is competitive for FLAIR synthesis.

摘要

多发性硬化症(MS)是一种白质(WM)疾病,其特征是形成WM病变,可通过磁共振成像(MRI)可视化。液体衰减反转恢复(FLAIR)MRI脉冲序列在临床和研究中用于检测WM病变。然而,在临床环境中,由于各种限制,一些MRI脉冲序列可能会被遗漏。有人提出使用三维全卷积神经网络从其他MRI脉冲序列预测FLAIR脉冲序列。此外,通过特定于脉冲序列的显著性图评估每个输入脉冲序列的贡献。该方法在真实的MS图像数据集上进行了测试,并通过将该方法与其他方法进行比较以及评估合成FLAIR脉冲序列中的病变对比度来进行评估。定性和定量结果均表明,该方法在FLAIR合成方面具有竞争力。

相似文献

2
Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.
J Magn Reson Imaging. 2017 Aug;46(2):557-564. doi: 10.1002/jmri.25557. Epub 2016 Nov 21.
4
Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.
Brain. 2016 May;139(Pt 5):1472-81. doi: 10.1093/brain/aww037. Epub 2016 Mar 8.
5
Comparing lesion detection of infratentorial multiple sclerosis lesions between T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences.
Clin Imaging. 2018 Sep-Oct;51:229-234. doi: 10.1016/j.clinimag.2018.05.017. Epub 2018 May 29.
6
The use of combined T-weighted and FLAIR synthetic magnetic resonance images to improve white matter region contrast: a feasibility study.
Radiol Phys Technol. 2019 Mar;12(1):118-125. doi: 10.1007/s12194-019-00498-7. Epub 2019 Jan 21.
7
Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.
J Neuroimaging. 2018 Mar;28(2):183-190. doi: 10.1111/jon.12474. Epub 2017 Sep 25.
8
Diagnostic value of 3D fluid attenuated inversion recovery sequence in multiple sclerosis.
Acta Radiol. 2015 May;56(5):622-7. doi: 10.1177/0284185114534413. Epub 2014 May 27.
10
Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
Neuroimage. 2017 Jul 15;155:159-168. doi: 10.1016/j.neuroimage.2017.04.034. Epub 2017 Apr 19.

引用本文的文献

1
The role of AI for MRI-analysis in multiple sclerosis-A brief overview.
Front Artif Intell. 2025 Apr 8;8:1478068. doi: 10.3389/frai.2025.1478068. eCollection 2025.
2
One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation.
IEEE Trans Med Imaging. 2023 Sep;42(9):2577-2591. doi: 10.1109/TMI.2023.3261707. Epub 2023 Aug 31.
3
DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI.
J Magn Reson Imaging. 2023 Oct;58(4):1200-1210. doi: 10.1002/jmri.28622. Epub 2023 Feb 2.
4
Evaluating the use of synthetic T1-w images in new T2 lesion detection in multiple sclerosis.
Front Neurosci. 2022 Sep 29;16:954662. doi: 10.3389/fnins.2022.954662. eCollection 2022.
5
Role of artificial intelligence in MS clinical practice.
Neuroimage Clin. 2022;35:103065. doi: 10.1016/j.nicl.2022.103065. Epub 2022 May 28.
7
Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
J Appl Clin Med Phys. 2022 Apr;23(4):e13530. doi: 10.1002/acm2.13530. Epub 2022 Jan 19.
9
Opportunities for Understanding MS Mechanisms and Progression With MRI Using Large-Scale Data Sharing and Artificial Intelligence.
Neurology. 2021 Nov 23;97(21):989-999. doi: 10.1212/WNL.0000000000012884. Epub 2021 Oct 4.

本文引用的文献

1
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
2
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
3
Differential diagnosis of neurodegenerative diseases using structural MRI data.
Neuroimage Clin. 2016 Mar 5;11:435-449. doi: 10.1016/j.nicl.2016.02.019. eCollection 2016.
4
Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model.
IEEE Trans Med Imaging. 2016 Jan;35(1):174-83. doi: 10.1109/TMI.2015.2461533. Epub 2015 Jul 28.
5
RANDOM FOREST FLAIR RECONSTRUCTION FROM , , AND -WEIGHTED MRI.
Proc IEEE Int Symp Biomed Imaging. 2014 May;2014:1079-1082. doi: 10.1109/ISBI.2014.6868061.
6
Deep learning based imaging data completion for improved brain disease diagnosis.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):305-12. doi: 10.1007/978-3-319-10443-0_39.
7
Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies.
IEEE Trans Med Imaging. 2014 Dec;33(12):2332-41. doi: 10.1109/TMI.2014.2340135. Epub 2014 Jul 17.
8
Is synthesizing MRI contrast useful for inter-modality analysis?
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):631-8. doi: 10.1007/978-3-642-40811-3_79.
9
Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):606-13. doi: 10.1007/978-3-642-40811-3_76.
10
MR CONTRAST SYNTHESIS FOR LESION SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010:932-935. doi: 10.1109/ISBI.2010.5490140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验