Suppr超能文献

利用三维全卷积网络从多序列磁共振成像进行液体衰减反转恢复磁共振成像合成以用于多发性硬化症研究

Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis.

作者信息

Wei Wen, Poirion Emilie, Bodini Benedetta, Durrleman Stanley, Colliot Olivier, Stankoff Bruno, Ayache Nicholas

机构信息

Université Côte d'Azur, Inria, Epione Project Team, Sophia Antipolis, France.

Sorbonne Université, Inserm, CNRS, Institut du cerveau et la moelle (ICM), AP-HP-Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, Paris, France.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):014005. doi: 10.1117/1.JMI.6.1.014005. Epub 2019 Feb 19.

Abstract

Multiple sclerosis (MS) is a white matter (WM) disease characterized by the formation of WM lesions, which can be visualized by magnetic resonance imaging (MRI). The fluid-attenuated inversion recovery (FLAIR) MRI pulse sequence is used clinically and in research for the detection of WM lesions. However, in clinical settings, some MRI pulse sequences could be missed because of various constraints. The use of the three-dimensional fully convolutional neural networks is proposed to predict FLAIR pulse sequences from other MRI pulse sequences. In addition, the contribution of each input pulse sequence is evaluated with a pulse sequence-specific saliency map. This approach is tested on a real MS image dataset and evaluated by comparing this approach with other methods and by assessing the lesion contrast in the synthetic FLAIR pulse sequence. Both the qualitative and quantitative results show that this method is competitive for FLAIR synthesis.

摘要

多发性硬化症(MS)是一种白质(WM)疾病,其特征是形成WM病变,可通过磁共振成像(MRI)可视化。液体衰减反转恢复(FLAIR)MRI脉冲序列在临床和研究中用于检测WM病变。然而,在临床环境中,由于各种限制,一些MRI脉冲序列可能会被遗漏。有人提出使用三维全卷积神经网络从其他MRI脉冲序列预测FLAIR脉冲序列。此外,通过特定于脉冲序列的显著性图评估每个输入脉冲序列的贡献。该方法在真实的MS图像数据集上进行了测试,并通过将该方法与其他方法进行比较以及评估合成FLAIR脉冲序列中的病变对比度来进行评估。定性和定量结果均表明,该方法在FLAIR合成方面具有竞争力。

相似文献

引用本文的文献

5
Role of artificial intelligence in MS clinical practice.人工智能在多发性硬化症临床实践中的作用。
Neuroimage Clin. 2022;35:103065. doi: 10.1016/j.nicl.2022.103065. Epub 2022 May 28.

本文引用的文献

1
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
2
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
8
Is synthesizing MRI contrast useful for inter-modality analysis?合成磁共振成像造影剂对多模态分析有用吗?
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):631-8. doi: 10.1007/978-3-642-40811-3_79.
10
MR CONTRAST SYNTHESIS FOR LESION SEGMENTATION.用于病变分割的磁共振造影合成
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010:932-935. doi: 10.1109/ISBI.2010.5490140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验