Bermudez Camilo, Remedios Samuel W, Ramadass Karthik, McHugo Maureen, Heckers Stephan, Huo Yuankai, Landman Bennett A
Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.
Henry Jackson Foundation, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, United States.
J Med Imaging (Bellingham). 2020 Nov;7(6):064004. doi: 10.1117/1.JMI.7.6.064004. Epub 2020 Dec 23.
Generalizability is an important problem in deep neural networks, especially with variability of data acquisition in clinical magnetic resonance imaging (MRI). Recently, the spatially localized atlas network tiles (SLANT) can effectively segment whole brain, non-contrast T1w MRI with 132 volumetric labels. Transfer learning (TL) is a commonly used domain adaptation tool to update the neural network weights for local factors, yet risks degradation of performance on the original validation/test cohorts. : We explore TL using unlabeled clinical data to address these concerns in the context of adapting SLANT to scanning protocol variations. We optimize whole-brain segmentation on heterogeneous clinical data by leveraging 480 unlabeled pairs of clinically acquired T1w MRI with and without intravenous contrast. We use labels generated on the pre-contrast image to train on the post-contrast image in a five-fold cross-validation framework. We further validated on a withheld test set of 29 paired scans over a different acquisition domain. Using TL, we improve reproducibility across imaging pairs measured by the reproducibility Dice coefficient (rDSC) between the pre- and post-contrast image. We showed an increase over the original SLANT algorithm (rDSC 0.82 versus 0.72) and the FreeSurfer v6.0.1 segmentation pipeline ( ). We demonstrate the impact of this work decreasing the root-mean-squared error of volumetric estimates of the hippocampus between paired images of the same subject by 67%. This work demonstrates a pipeline for unlabeled clinical data to translate algorithms optimized for research data to generalize toward heterogeneous clinical acquisitions.
可推广性是深度神经网络中的一个重要问题,尤其是在临床磁共振成像(MRI)数据采集存在变异性的情况下。最近,空间局部图谱网络切片(SLANT)能够有效地分割全脑,对具有132个体积标签的非增强T1加权MRI进行分割。迁移学习(TL)是一种常用的领域适应工具,用于根据局部因素更新神经网络权重,但存在使原始验证/测试队列性能下降的风险。我们探索使用未标记的临床数据进行迁移学习,以在使SLANT适应扫描协议变化的背景下解决这些问题。我们利用480对未标记的临床采集的有和没有静脉造影剂的T1加权MRI,对异质临床数据上的全脑分割进行优化。我们在五折交叉验证框架中,使用在造影前图像上生成的标签对造影后图像进行训练。我们进一步在一个由29对扫描组成的保留测试集上进行验证,该测试集来自不同的采集领域。通过迁移学习,我们提高了通过造影前和造影后图像之间的再现性Dice系数(rDSC)衡量成像对之间的再现性。我们展示了相对于原始SLANT算法(rDSC为0.82对0.72)和FreeSurfer v6.0.1分割管道(此处原文缺失具体数值)的提升。我们证明了这项工作的影响,即同一受试者配对图像之间海马体体积估计的均方根误差降低了67%。这项工作展示了一个利用未标记临床数据的流程,将针对研究数据优化的算法转化为可推广到异质临床采集的算法。