Institute for Research in Biomedicine, Join IRB-BSC program in Computational Biology, C/Baldiri i Reixac 10-12, 08028 Barcelona, Spain.
Nutr Metab (Lond). 2010 Dec 9;7:88. doi: 10.1186/1743-7075-7-88.
The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular network analysis of conditions, diseases and treatments might provide new insights and help build a better understanding of clinical, metabolic and molecular relationships among physiological conditions. Accordingly, our aim is to reveal such a relationship between a ketogenic diet and type 2 diabetes through systems biology approaches.
Our systemic approach is based on the creation and analyses of the cell networks representing the metabolic state in a very-low-carbohydrate low-fat ketogenic diet. This global view might help identify unnoticed relationships often overlooked in molecule or process-centered studies.
A strong relationship between the insulin resistance pathway and the ketosis main pathway was identified, providing a possible explanation for the improvement observed in clinical trials. Moreover, the map analyses permit the formulation of some hypothesis on functional relationships between the molecules involved in type 2 diabetes and induced ketosis, suggesting, for instance, a direct implication of glucose transporters or inflammatory processes. The molecular network analysis performed in the ketogenic-diet map, from the diabetes perspective, has provided insights on the potential mechanism of action, but also has opened new possibilities to study the applications of the ketogenic diet in other situations such as CNS or other metabolic dysfunctions.
全球范围内 2 型糖尿病的患病率正在上升,占所有诊断为糖尿病病例的 85-95%。临床试验提供了低碳水化合物生酮饮食在 2 型糖尿病患者临床结局方面的益处的证据。然而,尽管对糖尿病和酮症代谢状态的主要机制有了大量的了解,但这些改善的分子事件仍然不清楚。对条件、疾病和治疗的分子网络分析可能提供新的见解,并有助于更好地理解生理条件下的临床、代谢和分子关系。因此,我们的目标是通过系统生物学方法揭示生酮饮食与 2 型糖尿病之间的这种关系。
我们的系统方法基于创建和分析代表极低碳水化合物、低脂肪生酮饮食的代谢状态的细胞网络。这种全局观点可能有助于识别在分子或过程为中心的研究中经常被忽视的未被注意到的关系。
鉴定出胰岛素抵抗途径与酮症主要途径之间的强关系,为临床试验中观察到的改善提供了可能的解释。此外,图谱分析允许对涉及 2 型糖尿病和诱导酮症的分子之间的功能关系提出一些假设,例如葡萄糖转运蛋白或炎症过程的直接作用。从糖尿病的角度对生酮饮食图谱进行的分子网络分析,提供了对潜在作用机制的见解,同时也为研究生酮饮食在 CNS 或其他代谢功能障碍等其他情况下的应用开辟了新的可能性。