Suppr超能文献

用于基因组选择的改进套索法

Improved Lasso for genomic selection.

作者信息

Legarra Andrés, Robert-Granié Christèle, Croiseau Pascal, Guillaume François, Fritz Sébastien

机构信息

INRA, UR 631 SAGA, F-31326 Castanet-Tolosan, France.

出版信息

Genet Res (Camb). 2011 Feb;93(1):77-87. doi: 10.1017/S0016672310000534. Epub 2010 Dec 14.

Abstract

Empirical experience with genomic selection in dairy cattle suggests that the distribution of the effects of single nucleotide polymorphisms (SNPs) might be far from normality for some traits. An alternative, avoiding the use of arbitrary prior information, is the Bayesian Lasso (BL). Regular BL uses a common variance parameter for residual and SNP effects (BL1Var). We propose here a BL with different residual and SNP effect variances (BL2Var), equivalent to the original Lasso formulation. The λ parameter in Lasso is related to genetic variation in the population. We also suggest precomputing individual variances of SNP effects by BL2Var, to be later used in a linear mixed model (HetVar-GBLUP). Models were tested in a cross-validation design including 1756 Holstein and 678 Montbéliarde French bulls, with 1216 and 451 bulls used as training data; 51 325 and 49 625 polymorphic SNP were used. Milk production traits were tested. Other methods tested included linear mixed models using variances inferred from pedigree estimates or integrated out from the data. Estimates of genetic variation in the population were close to pedigree estimates in BL2Var but not in BL1Var. BL1Var shrank breeding values too little because of the common variance. BL2Var was the most accurate method for prediction and accommodated well major genes, in particular for fat percentage. BL1Var was the least accurate. HetVar-GBLUP was almost as accurate as BL2Var and allows for simple computations and extensions.

摘要

奶牛基因组选择的实证经验表明,对于某些性状,单核苷酸多态性(SNP)效应的分布可能远非正态分布。一种避免使用任意先验信息的替代方法是贝叶斯套索法(BL)。常规的BL对残差和SNP效应使用共同的方差参数(BL1Var)。我们在此提出一种具有不同残差和SNP效应方差的BL(BL2Var),它等同于原始的套索法公式。套索法中的λ参数与群体中的遗传变异有关。我们还建议通过BL2Var预先计算SNP效应的个体方差,以便稍后用于线性混合模型(HetVar - GBLUP)。在交叉验证设计中对模型进行了测试,该设计包括1756头荷斯坦公牛和678头法国蒙贝利亚尔公牛,其中1216头和451头公牛用作训练数据;使用了51325个和49625个多态性SNP。对产奶性状进行了测试。测试的其他方法包括使用从系谱估计推断出的方差或从数据中积分出来的方差的线性混合模型。群体中遗传变异的估计值在BL2Var中接近系谱估计值,但在BL1Var中并非如此。由于共同方差,BL1Var对育种值的收缩过小。BL2Var是预测最准确的方法,并且能很好地适应主基因,特别是对于乳脂率。BL1Var最不准确。HetVar - GBLUP几乎与BL2Var一样准确,并且允许进行简单的计算和扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验