Suppr超能文献

基于算术调和割的层次聚类:复杂度与实验。

Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments.

机构信息

Dipartimento di Matematica ed Informatica, University of Udine, Udine, Italy.

出版信息

PLoS One. 2010 Dec 2;5(12):e14067. doi: 10.1371/journal.pone.0014067.

Abstract

Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering problem defined by a novel objective function we call the arithmetic-harmonic cut. We show that the problem of finding such a cut is NP-hard and APX-hard but is fixed-parameter tractable, which indicates that although the problem is unlikely to have a polynomial time algorithm (even for approximation), exact parameterized and local search based techniques may produce workable algorithms. To this end, we implement a memetic algorithm for the problem and demonstrate the effectiveness of the arithmetic-harmonic cut on a number of datasets including a cancer type dataset and a corona virus dataset. We show favorable performance compared to currently used hierarchical clustering techniques such as k-Means, Graclus and Normalized-Cut. The arithmetic-harmonic cut metric overcoming difficulties other hierarchical methods have in representing both intercluster differences and intracluster similarities.

摘要

聚类,特别是层次聚类,是一种在广泛的知识领域中理解和分析数据的重要方法,在数据可以在进化背景下分类的系统中具有显著的实用性。本文介绍了一个新的层次聚类问题,由我们称之为算术-调和切割的新目标函数定义。我们表明,找到这样一个切割的问题是 NP 难和 APX 难的,但却是固定参数可处理的,这表明尽管该问题不太可能有多项式时间算法(即使是近似的),但基于精确参数化和局部搜索的技术可能会产生可行的算法。为此,我们为该问题实现了一个遗传算法,并在包括癌症类型数据集和冠状病毒数据集在内的多个数据集上展示了算术调和切割的有效性。与 k-Means、Graclus 和 Normalized-Cut 等当前使用的层次聚类技术相比,我们显示出了有利的性能。算术调和切割度量克服了其他层次方法在表示簇间差异和簇内相似性方面的困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b28/2997101/60bc4a1ad1e1/pone.0014067.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验