Suppr超能文献

纳米孔中的脱水和离子电导量子化。

Dehydration and ionic conductance quantization in nanopores.

机构信息

Theoretical Division, MS-B213, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

J Phys Condens Matter. 2010 Nov 17;22(45):454126. doi: 10.1088/0953-8984/22/45/454126.

Abstract

There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct functional nanoscale devices. Specifically, we focus on the newly predicted phenomenon of quantized ionic conductance in nanopores as a function of the effective pore radius--a prediction that yields a particularly transparent way to probe the contribution of dehydration to ionic transport. We study the role of ionic species in the formation of hydration layers inside and outside of pores. We find that the ion type plays only a minor role in the radial positions of the predicted steps in the ion conductance. However, ions with higher valency form stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting noise, with synthetic nanopores would provide evidence of the deviation from macroscopic (continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light on the behavior of ions in more complex biological channels.

摘要

在过去的十年中,人们在识别生物孔(离子通道)的结构和功能以及制造合成孔方面取得了巨大的实验进展。尽管取得了这些进展,但关于这些系统中离子传输的机制和普遍特征,仍有许多问题尚未解决。在本文中,我们研究了使用纳米孔来探测离子传输并构建功能纳米级设备。具体来说,我们专注于纳米孔中预测的量化离子电导现象作为有效孔径的函数——这一预测为探测脱水对离子传输的贡献提供了一种特别透明的方法。我们研究了离子种类在孔内外形成水合层中的作用。我们发现,离子类型在离子电导预测台阶的径向位置上只起很小的作用。然而,具有更高价态的离子形成更强的水合壳,因此提供了更明显的、因此更容易检测到的离子电流下降。用合成纳米孔直接测量这种现象,或者从由此产生的噪声中测量,将为由于纳米尺度上的微观特征而偏离宏观(连续)介电行为提供证据,并可能揭示离子在更复杂的生物通道中的行为。

相似文献

1
Dehydration and ionic conductance quantization in nanopores.纳米孔中的脱水和离子电导量子化。
J Phys Condens Matter. 2010 Nov 17;22(45):454126. doi: 10.1088/0953-8984/22/45/454126.
2
Quantized ionic conductance in nanopores.纳米孔中的量子化离子电导
Phys Rev Lett. 2009 Sep 18;103(12):128102. doi: 10.1103/PhysRevLett.103.128102. Epub 2009 Sep 17.
3
Molecular switch for tuning ions across nanopores by an external electric field.通过外电场调节纳米孔中离子的分子开关。
Nanotechnology. 2013 Jan 18;24(2):025502. doi: 10.1088/0957-4484/24/2/025502. Epub 2012 Dec 13.
4
5
Water adsorption in ion-bearing nanopores.含离子纳米孔中的水吸附
J Chem Phys. 2007 Jan 14;126(2):024703. doi: 10.1063/1.2400857.
8
Nanoprecipitation-assisted ion current oscillations.纳米沉淀辅助离子电流振荡
Nat Nanotechnol. 2008 Jan;3(1):51-7. doi: 10.1038/nnano.2007.420. Epub 2007 Dec 23.

引用本文的文献

1
Role of Ion Dehydration in Ion-Ion Selectivity of Dense Membranes.离子脱水在致密膜离子-离子选择性中的作用。
Environ Sci Technol. 2025 Sep 2;59(34):17997-18009. doi: 10.1021/acs.est.5c04303. Epub 2025 Aug 19.
4
Field-Dependent Dehydration and Optimal Ionic Escape Paths for CN Membranes.场致依赖脱水与氰化物膜的最佳离子逃逸路径
J Phys Chem B. 2021 Jul 1;125(25):7044-7059. doi: 10.1021/acs.jpcb.1c03255. Epub 2021 Jun 11.
6
Stochastic Ionic Transport in Single Atomic Zero-Dimensional Pores.单原子零维孔道中的随机离子传输。
ACS Nano. 2020 Sep 22;14(9):11831-11845. doi: 10.1021/acsnano.0c04716. Epub 2020 Aug 31.
10
Maxwell-Hall access resistance in graphene nanopores.石墨烯纳米孔中的麦克斯韦-霍尔接触电阻。
Phys Chem Chem Phys. 2018 Feb 14;20(7):4646-4651. doi: 10.1039/c7cp07924a.

本文引用的文献

1
Ionic memcapacitive effects in nanopores.纳米孔中的离子电容效应。
Nano Lett. 2010 Jul 14;10(7):2674-8. doi: 10.1021/nl1014734.
2
Identifying single nucleotides by tunnelling current.通过隧道电流识别单个核苷酸。
Nat Nanotechnol. 2010 Apr;5(4):286-90. doi: 10.1038/nnano.2010.42. Epub 2010 Mar 21.
4
Ionic Current Rectification Through Silica Nanopores.通过二氧化硅纳米孔的离子电流整流
J Phys Chem C Nanomater Interfaces. 2009 Feb 1;113(5):1850. doi: 10.1021/jp804724p.
7
Quantized ionic conductance in nanopores.纳米孔中的量子化离子电导
Phys Rev Lett. 2009 Sep 18;103(12):128102. doi: 10.1103/PhysRevLett.103.128102. Epub 2009 Sep 17.
8
Self-consistent analytic solution for the current and the access resistance in open ion channels.开放离子通道中电流与接入电阻的自洽解析解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021925. doi: 10.1103/PhysRevE.80.021925. Epub 2009 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验