Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden.
Anal Chem. 2011 Feb 1;83(3):1000-7. doi: 10.1021/ac102781u. Epub 2010 Dec 16.
A photoclick method based on azide photoligation and Cu-catalyzed azide-alkyne cycloaddition has been evaluated for the immobilization of carbohydrates to polymeric materials. The biomolecular recognition properties of the materials have been investigated with regard to applicable polymeric substrates and selectivity of protein binding. The method was used to functionalize a range of polymeric surfaces (polystyrene, polyacrylamide, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and polypropene) with various carbohydrate structures (based on α-D-mannose, β-D-galactose, and N-acetyl-β-D-glucosamine). The functionalized surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with a series of different carbohydrate-binding proteins (lectins). The method proved to be robust and versatile, resulting in a range of efficient sensors showing high and predictable protein selectivities.
一种基于叠氮光连接和铜催化的叠氮-炔环加成的光点击方法已被评估用于将碳水化合物固定到聚合物材料上。已经研究了材料的生物分子识别特性,包括适用的聚合物基底和蛋白质结合的选择性。该方法用于对一系列聚合物表面(聚苯乙烯、聚丙烯酰胺、聚乙二醇、聚(2-乙基-2-恶唑啉)和聚丙烯)进行功能化,带有各种碳水化合物结构(基于α-D-甘露糖、β-D-半乳糖和 N-乙酰-β-D-葡萄糖胺)。使用带有一系列不同碳水化合物结合蛋白(凝集素)的石英晶体微天平流动系统,对功能化表面进行实时蛋白质-碳水化合物相互作用研究。该方法被证明是稳健且多功能的,产生了一系列高效传感器,显示出高且可预测的蛋白质选择性。