Department of Mathematics and Computing, Centre for Systems Biology, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
Comput Methods Programs Biomed. 2011 Dec;104(3):358-72. doi: 10.1016/j.cmpb.2010.11.014. Epub 2010 Dec 17.
This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals.
本文提出了一种新的方法,称为基于聚类技术的最小二乘支持向量机(CT-LS-SVM),用于 EEG 信号的分类。决策分两个阶段进行。在第一阶段,使用聚类技术(CT)提取 EEG 数据的代表性特征。在第二阶段,将最小二乘支持向量机(LS-SVM)应用于提取的特征,对两类 EEG 信号进行分类。为了验证所提出方法的有效性,在三个公开可用的基准数据库上进行了多项实验,其中一个用于癫痫 EEG 数据,一个用于心理意象任务 EEG 数据,另一个用于运动想象 EEG 数据。对于癫痫 EEG 数据,我们提出的方法的平均灵敏度、特异性和分类精度分别为 94.92%、93.44%和 94.18%;对于运动想象 EEG 数据,分别为 83.98%、84.37%和 84.17%;对于心理意象任务 EEG 数据,分别为 64.61%、58.77%和 61.69%。将 CT-LS-SVM 算法的性能与我们之前的研究进行了比较,在之前的研究中,使用最小二乘支持向量机(LS-SVM)的简单随机抽样(SRS-LS-SVM)用于 EEG 信号分类,从分类精度和执行(运行)时间方面进行了比较。我们还将所提出的方法与文献中其他现有的方法在三个数据库中进行了比较。实验结果表明,与之前报道的方法相比,所提出的算法可以产生更好的分类率,并且与 SRS-LS-SVM 技术相比,执行时间要少得多。本文的研究结果表明,所提出的方法对于两类 EEG 信号的分类非常有效。