BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.
J Bacteriol. 2011 Mar;193(5):1023-33. doi: 10.1128/JB.01092-10. Epub 2010 Dec 17.
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane.
转座子插入 Geobacter sulfurreducens GSU1501 中,该基因位于多糖生物合成基因操纵子内的一个 ATP 依赖性输出泵中,先前的研究表明,它消除了不溶性 Fe(III)还原和利用电极作为电子受体。用卡那霉素抗性盒替换 GSU1501 产生了一个类似的缺陷突变体,该突变体可以通过在转位中表达 GSU1500 到 GSU1505 部分互补。Δ1501 突变体表现出有限的细胞-细胞聚集,增强了对带负电荷表面的附着,以及对带正电荷的聚-d-赖氨酸或 Fe(III)涂层表面的附着不良。野生型和突变型细胞附着在石墨电极上,但当电极处于氧化电势(诱导正表面电荷,相对于标准氢电极 [SHE] 为+0.24 V)时,Δ1501 突变体细胞脱落。扫描电子显微镜显示,野生型 G. sulfurreducens 周围有纤维,而 Δ1501 突变体中则没有。两种细胞类型上都检测到了等量的 IV 型菌毛和菌毛相关细胞色素,但剪切释放出与多糖结合的稳定 c 型细胞色素和其他蛋白质基质。突变体基质中糖的含量减少了 60%,几乎没有 OmcZ 等 c 型细胞色素。将野生型细胞外基质添加到Δ1501 培养物中恢复了聚集和 Fe(III)还原。多糖结合染料刚果红优先结合野生型细胞和细胞外基质材料,而不是突变型细胞,刚果红抑制了野生型细胞的聚集和 Fe(III)还原。这些结果表明,xap(细胞外锚定多糖)基因座在金属氧化物附着、细胞-细胞聚集以及必需细胞色素在 Geobacter 外膜之外的定位中起着至关重要的作用。