Andrews Andrew J, Luger Karolin
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
Methods Enzymol. 2011;488:265-85. doi: 10.1016/B978-0-12-381268-1.00011-2.
The repeating structural unit of eukaryotic chromatin, the nucleosome, is composed of two copies each of the histone proteins H2A, H2B, H3, and H4. These proteins form an octamer around which 147bp of DNA is wrapped in 1.65 superhelical turns (Luger et al., 1997). The nucleosome represents a major obstacle for any protein seeking access to the DNA. Several strategies have evolved to regulate access to nucleosomal DNA, such as posttranslational modification of histones and histone variants, ATP-dependent chromatin remodeling machines, and histone chaperones. It is likely that most if not all of these mechanisms directly impact the thermodynamics of the nucleosome. The DNA sequence itself may also impact its own inherent accessibility through modulating nucleosome positioning and/or thermodynamics. However, these working hypotheses could not be tested directly because no assays to measure nucleosome stability under physiological conditions were available. Attempts to determine the stability of nucleosomes have been hampered by the fact that the nucleosomes do not assemble in vitro under physiological conditions, but will only form nucleosomes through titration from high (2M) to low (>0.3M) ionic strength. We have developed a coupled equilibrium approach using the histone chaperone Nap1 to measure nucleosome thermodynamics under physiological conditions. This method will be useful for examining the impact of DNA sequence, histone variants, and posttranslational modifications on nucleosome thermodynamics.
真核染色质的重复结构单元——核小体,由组蛋白H2A、H2B、H3和H4各两个拷贝组成。这些蛋白质形成一个八聚体,147bp的DNA以1.65个超螺旋圈缠绕在其周围(Luger等人,1997年)。核小体对任何试图接触DNA的蛋白质来说都是一个主要障碍。已经进化出了几种调节对核小体DNA接触的策略,例如组蛋白的翻译后修饰和组蛋白变体、ATP依赖的染色质重塑机器以及组蛋白伴侣。很可能这些机制中的大多数(如果不是全部的话)直接影响核小体的热力学。DNA序列本身也可能通过调节核小体定位和/或热力学来影响其自身的固有可及性。然而,这些工作假设无法直接进行测试,因为当时没有可在生理条件下测量核小体稳定性的检测方法。确定核小体稳定性的尝试受到以下事实的阻碍:核小体在生理条件下不会在体外组装,而是只能通过从高(2M)到低(>0.3M)离子强度的滴定形成核小体。我们开发了一种使用组蛋白伴侣Nap1的耦合平衡方法,以在生理条件下测量核小体的热力学。该方法将有助于研究DNA序列、组蛋白变体和翻译后修饰对核小体热力学的影响。