Suppr超能文献

绘制泛素的水合动力学图谱。

Mapping the hydration dynamics of ubiquitin.

机构信息

Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, United States.

出版信息

J Am Chem Soc. 2011 Aug 17;133(32):12326-9. doi: 10.1021/ja202033k. Epub 2011 Jul 22.

Abstract

The nature of water's interaction with biomolecules such as proteins has been difficult to examine in detail at atomic resolution. Solution NMR spectroscopy is potentially a powerful method for characterizing both the structural and temporal aspects of protein hydration but has been plagued by artifacts. Encapsulation of the protein of interest within the aqueous core of a reverse micelle particle results in a general slowing of water dynamics, significant reduction in hydrogen exchange chemistry and elimination of contributions from bulk water thereby enabling the use of nuclear Overhauser effects to quantify interactions between the protein surface and hydration water. Here we extend this approach to allow use of dipolar interactions between hydration water and hydrogens bonded to protein carbon atoms. By manipulating the molecular reorientation time of the reverse micelle particle through use of low viscosity liquid propane, the T(1ρ) relaxation time constants of (1)H bonded to (13)C were sufficiently lengthened to allow high quality rotating frame nuclear Overhauser effects to be obtained. These data supplement previous results obtained from dipolar interactions between the protein and hydrogens bonded to nitrogen and in aggregate cover the majority of the molecular surface of the protein. A wide range of hydration dynamics is observed. Clustering of hydration dynamics on the molecular surface is also seen. Regions of long-lived hydration water correspond with regions of the protein that participate in molecular recognition of binding partners suggesting that the contribution of the solvent entropy to the entropy of binding has been maximized through evolution.

摘要

水与生物分子(如蛋白质)相互作用的性质一直难以在原子分辨率下进行详细研究。溶液 NMR 光谱学是一种用于描述蛋白质水合作用的结构和时间方面的潜在强大方法,但一直受到伪影的困扰。将感兴趣的蛋白质封装在反胶束颗粒的水核内,会导致水动力学普遍减慢,氢交换化学显著减少,并消除来自体相水的贡献,从而能够利用核 Overhauser 效应来定量蛋白质表面与水合水之间的相互作用。在这里,我们扩展了这种方法,以允许使用水合水与与蛋白质碳原子结合的氢之间的偶极相互作用。通过使用低粘度的液体丙烷来操纵反胶束颗粒的分子重定向时间,可以充分延长与(13)C 结合的(1)H 的 T(1ρ)弛豫时间常数,从而可以获得高质量的旋转框架核 Overhauser 效应。这些数据补充了先前从蛋白质与与氮结合的氢之间的偶极相互作用获得的结果,并且总体上涵盖了蛋白质的大部分分子表面。观察到广泛的水合动力学。在分子表面上也观察到水合动力学的聚类。长寿命水合水的区域与参与结合伴侣分子识别的蛋白质区域相对应,这表明溶剂熵对结合熵的贡献已通过进化最大化。

相似文献

1
Mapping the hydration dynamics of ubiquitin.绘制泛素的水合动力学图谱。
J Am Chem Soc. 2011 Aug 17;133(32):12326-9. doi: 10.1021/ja202033k. Epub 2011 Jul 22.
5
Protein-ice interaction of an antifreeze protein observed with solid-state NMR.固态 NMR 观察到的抗冻蛋白与冰的相互作用。
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17580-5. doi: 10.1073/pnas.1009369107. Epub 2010 Sep 30.
6
Dynamics of protein and peptide hydration.蛋白质和肽的水合动力学。
J Am Chem Soc. 2004 Jan 14;126(1):102-14. doi: 10.1021/ja038325d.
8
Protein conformational entropy is not slaved to water.蛋白质构象熵不受水的支配。
Sci Rep. 2020 Oct 16;10(1):17587. doi: 10.1038/s41598-020-74382-5.

引用本文的文献

6
Deep mining of the protein energy landscape.蛋白质能量景观的深度挖掘。
Struct Dyn. 2023 Apr 27;10(2):020901. doi: 10.1063/4.0000180. eCollection 2023 Mar.
10
Universal dynamical onset in water at distinct material interfaces.不同材料界面处水中的普遍动力学起始。
Chem Sci. 2022 Mar 28;13(15):4341-4351. doi: 10.1039/d1sc04650k. eCollection 2022 Apr 13.

本文引用的文献

1
Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags.使用顺磁性金属标签的生物分子核磁共振中的伪接触位移
Prog Nucl Magn Reson Spectrosc. 2017 Feb;98-99:20-49. doi: 10.1016/j.pnmrs.2016.11.001. Epub 2016 Dec 1.
8
Protein cold denaturation as seen from the solvent.从溶剂角度看蛋白质冷变性。
J Am Chem Soc. 2009 Jan 28;131(3):1025-36. doi: 10.1021/ja8056419.
10
Water as an active constituent in cell biology.水作为细胞生物学中的一种活性成分。
Chem Rev. 2008 Jan;108(1):74-108. doi: 10.1021/cr068037a. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验