Suppr超能文献

向量反转降低了反扫视的在线控制。

Vector inversion diminishes the online control of antisaccades.

机构信息

School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada.

出版信息

Exp Brain Res. 2011 Mar;209(1):117-27. doi: 10.1007/s00221-010-2525-7. Epub 2011 Jan 6.

Abstract

Antisaccades require the suppression of a stimulus-driven response (i.e., response suppression) and the computation of a movement plan mirror-symmetrical to the location of a target (i.e., vector inversion). The goal of the present study was to determine whether response suppression, vector inversion or both contribute to previously reported differences in the online control of pro- and antisaccades (Heath in Exp Brain Res 203:743-752, 2010a). Pro- and antisaccades were completed in separate blocks (i.e., blocked schedule) and a block wherein the spatial relation between stimulus and response was provided at response cuing (i.e., random schedule). Notably, the random schedule provides a relative means for equating response suppression across pro- and antisaccades. To examine online trajectory amendments, we computed the proportion of variance (R² values) explained by the spatial location of the eye at early, middle and late stages of saccade trajectories relative to the saccade's ultimate endpoint. The basis for this analysis is that between-task differences in R² magnitudes reflect differences in the use of feedback for online trajectory amendments: small R² values represent a trajectory supported via online control whereas larger R² values reflect a reduction in online control. Results show that antisaccades yielded larger R² values than prosaccades from early to late stages of saccade trajectories, and this finding was observed regardless of whether or not tasks were equated for response suppression. Thus, we propose that the intentional nature of vector inversion disrupts the normally online control of saccades and renders a mode of control that is not optimized to support error-reducing trajectory amendments.

摘要

反扫视需要抑制刺激驱动的反应(即反应抑制)和计算与目标位置镜像对称的运动计划(即向量反转)。本研究的目的是确定反应抑制、向量反转或两者是否有助于解释先前报道的正扫视和反扫视在线控制中的差异(Heath 在 Exp Brain Res 203:743-752, 2010a)。正扫视和反扫视在单独的块中完成(即,块式计划),并且在响应提示时提供刺激和响应之间的空间关系的块中(即,随机计划)。值得注意的是,随机计划为在正扫视和反扫视之间平衡反应抑制提供了一种相对手段。为了检查在线轨迹修正,我们计算了眼球在扫视轨迹的早期、中期和晚期相对于扫视最终端点的空间位置解释方差的比例(R² 值)。这种分析的基础是,任务之间 R² 值大小的差异反映了使用反馈进行在线轨迹修正的差异:小的 R² 值表示通过在线控制支持轨迹,而较大的 R² 值反映了在线控制的减少。结果表明,无论是否平衡任务的反应抑制,反扫视在扫视轨迹的早期到晚期阶段产生的 R² 值都大于正扫视,这一发现是一致的。因此,我们提出,向量反转的有意性质会破坏扫视的正常在线控制,并使控制模式无法优化以支持减少误差的轨迹修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验