Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
Neurology. 2011 Feb 8;76(6):501-10. doi: 10.1212/WNL.0b013e31820af900. Epub 2011 Jan 12.
To investigate factors, including cognitive and brain reserve, which may independently predict prevalent and incident dementia of the Alzheimer type (DAT) and to determine whether inclusion of identified factors increases the predictive accuracy of the CSF biomarkers Aβ(42), tau, ptau(181), tau/Aβ(42), and ptau(181)/Aβ(42).
Logistic regression identified variables that predicted prevalent DAT when considered together with each CSF biomarker in a cross-sectional sample of 201 participants with normal cognition and 46 with DAT. The area under the receiver operating characteristic curve (AUC) from the resulting model was compared with the AUC generated using the biomarker alone. In a second sample with normal cognition at baseline and longitudinal data available (n = 213), Cox proportional hazards models identified variables that predicted incident DAT together with each biomarker, and the models' concordance probability estimate (CPE), which was compared to the CPE generated using the biomarker alone.
APOE genotype including an ε4 allele, male gender, and smaller normalized whole brain volumes (nWBV) were cross-sectionally associated with DAT when considered together with every biomarker. In the longitudinal sample (mean follow-up = 3.2 years), 14 participants (6.6%) developed DAT. Older age predicted a faster time to DAT in every model, and greater education predicted a slower time in 4 of 5 models. Inclusion of ancillary variables resulted in better cross-sectional prediction of DAT for all biomarkers (p < 0.0021), and better longitudinal prediction for 4 of 5 biomarkers (p < 0.0022).
The predictive accuracy of CSF biomarkers is improved by including age, education, and nWBV in analyses.
研究认知和脑储备等因素,这些因素可能独立预测阿尔茨海默病(AD)的现患和新发痴呆,并确定是否纳入已确定的因素会提高 CSF 生物标志物 Aβ(42)、tau、ptau(181)、tau/Aβ(42)和 ptau(181)/Aβ(42)的预测准确性。
在一个包含 201 名认知正常和 46 名 AD 患者的横断面样本中,逻辑回归确定了与每个 CSF 生物标志物一起考虑时可预测现患 AD 的变量。使用来自该模型的接收者操作特征曲线(ROC)下面积(AUC)与单独使用生物标志物生成的 AUC 进行比较。在基线认知正常且具有纵向数据的第二个样本(n=213)中,Cox 比例风险模型确定了与每个生物标志物一起预测新发 AD 的变量,以及模型的一致性概率估计值(CPE),并与单独使用生物标志物生成的 CPE 进行比较。
APOE 基因型(包括 ε4 等位基因)、男性性别和正常化全脑体积(nWBV)较小与所有生物标志物一起与 AD 存在横断面关联。在纵向样本(平均随访时间=3.2 年)中,14 名参与者(6.6%)发展为 AD。在每个模型中,年龄越大预示着 AD 发生的时间越快,而受教育程度越高预示着 5 个模型中有 4 个模型中 AD 发生的时间越慢。纳入辅助变量可提高所有生物标志物的横断面 AD 预测准确性(p<0.0021),以及 5 个生物标志物中的 4 个的纵向预测准确性(p<0.0022)。
在分析中纳入年龄、教育程度和 nWBV 可提高 CSF 生物标志物的预测准确性。