Suppr超能文献

条件格兰杰因果模型方法在功能磁共振成像中的组分析。

A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.

机构信息

Pediatric Brain Imaging Laboratory, Department of Psychiatry, Columbia University, New York, NY 10032, USA.

出版信息

Magn Reson Imaging. 2011 Apr;29(3):418-33. doi: 10.1016/j.mri.2010.10.008. Epub 2011 Jan 12.

Abstract

Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy in detecting network connectivity than the widely used pair-wise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI.

摘要

格兰杰因果模型(GCM)源自数据的多元向量自回归模型,已被用于通过功能磁共振成像(fMRI)识别人脑的有效连通性,并揭示各种认知过程背后复杂的时间和空间动态。在最近的 fMRI 有效连通性测量中,通常基于单个体素值或群体水平特殊脑区的平均值应用两两 GCM。尽管已经提出了一些新的条件 GCM 方法来量化脑区之间的连接,但我们的研究是第一个提出可行的 fMRI 数据 GCM 组分析标准化方法的研究。为了比较我们的方法与传统的两两 GCM 模型的有效性,我们将一种成熟的条件 GCM 应用于从 fMRI 数据的一般线性模型(GLM)和组空间核独立成分分析中预先选择的脑区时间序列。使用与任务相关和静息状态 fMRI 的数据集来使用条件 GCM 方法研究脑区之间的连接。在块设计范式中,使用 GLM 检测到的情绪相关皮层中的脑激活区域,提出了条件 GCM 方法来研究情绪处理过程中左杏仁核和前扣带皮层之间习惯化的因果关系。对于静息状态数据集,可以计算不仅是网络之间的有效连通性,还可以计算单个网络内的异质性。我们的结果进一步显示了默认模式网络的特定交互模式,可以被描述为对内侧前额叶皮层和后扣带皮层的传入和传出影响。这些结果表明,基于线性多元向量自回归模型的条件 GCM 方法比广泛使用的两两 GCM 方法在检测网络连通性方面具有更高的准确性,这种组分析方法可以非常有用地扩展 fMRI 中获得的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验